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Street view imagery has become an important data source for urban studies, supporting various urban tasks
such as environmental perception and socioeconomic predictions. Classic methods predominantly rely on
handcrafted features or supervised machine learning to derive information from the images. However, these
methods often fail to capture the hierarchical semantics of urban environments: at the visual layer they cannot
selectively represent dynamic versus static objects, while at the higher contextual layer they cannot abstract
the collective ambience of a scene beyond tangible visual content, which in turn limits their effectiveness
in tasks such as place recognition and socioeconomic inference. Essentially, this limitation arises because
different urban tasks rely on fundamentally different invariances across space and time. To address this
challenge, we propose the spatiotemporal contrastive learning framework, a novel self-supervised framework
that systematically organizes representation learning for urban scenes. This framework defines distinct pre-
training strategies by selectively contrasting what remains invariant versus what changes across the dimensions
of space and time, enabling the model to isolate specific urban features like dynamic elements, static structures,
or neighborhood ambiance. The validation experiments confirm that each contrastive strategy produces
specialized representations that significantly outperform established baselines on their corresponding tasks.
This study provides not only a novel representation framework but also a rigorous benchmark that enhances the
applicability of visual data in urban science. The code is available at https://github.com/yonglleee/UrbanSTCL.

1. Introduction To address the challenge of learning such adaptable representations,
researchers have increasingly turned to self-supervised learning (SSL).
Self-supervised learning, leveraging techniques like contrastive learn-
ing (Chen et al., 2020, 2021; He et al., 2020) and masked modeling (He
et al., 2022; Xie et al., 2022), has demonstrated outstanding perfor-
mance in classical vision tasks such as image classification (Radford
et al., 2021), object detection (He et al., 2022), and semantic segmen-
tation (Wang, Zhang, et al., 2020), often surpassing traditional super-
vised learning approaches. However, current self-supervised methods
tend to encode as much semantic and structural information as possi-
ble (Huang et al., 2024; Park et al., 2023), which does not fully align

With the growing availability of street view imagery (Naik et al.,
2017; Zhang, Salazar-Miranda, et al., 2024), cities are leveraging large-
scale visual data for diverse tasks such as place recognition (Lowry
et al., 2015), urban perception analysis (Dubey et al., 2016; Zhang
et al., 2018), road condition assessment (Chacra & Zelek, 2018), and
socioeconomic prediction (Gebru et al., 2017; Wang, Li, & Rajagopal,
2020). Unlike classic object-centric vision tasks, these urban applica-
tions focus on distinct aspects of the urban environment. For instance,
place recognition relies on invariant features including buildings and
roads, while measuring human perceptions of a place relies on ele-

ments such as building conditions, street lighting, human activities,
and vegetations to assess the overall perceptions within a scene, and
socioeconomic prediction focuses on a spatial-invariant neighborhood
atmosphere, capturing physical, social, cultural, and functional features
across nearby areas. Learning effective street view representations that
adapt to these varied needs, particularly in capturing both spatial and
temporal dynamics of urban environments, remains a key challenge.
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with the diverse requirements of urban tasks. For example, they may
struggle to differentiate between the static features needed for place
recognition (Lowry et al.,, 2015) and the dynamic elements critical
for human perception of places (Dubey et al., 2016; Zhang et al,,
2018), or to capture the spatial consistency required for socioeconomic
prediction (Wang, Li, & Rajagopal, 2020).
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Fig. 1. The spatiotemporal contrastive learning framework. Our framework organizes four contrastive learning strategies based on their spatiotemporal context.
The axes define the relationship between the two images in a positive pair. The vertical axis distinguishes between images captured at the same time versus those
captured across time, while the horizontal axis distinguishes between images from the same location versus those across adjacent but different locations. This
design allows each strategy to target a different type of invariance, yielding specialized representations with a distinct focus, as detailed in each quadrant.

In image representation learning, selectively encoding dynamic and
static information in urban environments and the ambiance they create
is highly important but inherently challenging (Cordts et al., 2016).
Achieving precise encoding of such information typically requires sep-
arately labeling dynamic and static elements and using specific train-
ing strategies (Cheng et al., 2017; Wang et al., 2019) (e.g., masking
dynamic elements when encoding static ones). However, both the
labeling and training processes are fraught with difficulties. Factors
such as lighting conditions, vegetation appearance, and ground lit-
ter are challenging to label objectively and consistently. This makes
it nearly impossible to accurately represent these complex environ-
mental factors using traditional datasets (e.g., ImageNet (Deng et al.,
2009), Places (Zhou et al., 2017)) and classical methods (supervised or
self-supervised).

To address these challenges, we propose a contrastive street-view
representation learning framework that explicitly leverages timestamp
and geolocations—types of metadata largely absent from standard im-
age datasets. The core idea is to form complementary positive pairs
that target different invariances: (i) Temporal Contrast — positive pairs
formed from the same location captured at different times — drive the
encoder to emphasize time-invariant, static attributes of the built envi-
ronment (e.g., buildings, infrastructure) and to suppress sensitivity to
dynamic elements (pedestrians, vehicles), benefiting tasks such as place
recognition. (ii) Spatial Contrast — positive pairs formed from images
taken at the same time and adjacent but different locations — en-
courage representations that are stable within an urban neighborhood,
capturing its socioeconomic “ambience” while reducing sensitivity to
object-level variations, which supports neighborhood-scale socioeco-
nomic estimation. (iii) Instance Contrast essentially reduces to classical
instance-level contrastive learning, yielding representations that pre-
serve the full scene (both static and dynamic content, as well as overall
ambience) for human-perception-oriented tasks. (iv) Spatial-temporal
Contrast — positive pairs spanning both temporal and spatial varia-
tions promote invariance over both space and time, capturing more
enduring, higher-level characteristics — such as historical and cultural
character—that support related urban analytics.

We validate the effectiveness of our primary hypotheses (Instance,
Spatial, and Temporal contrast) across multiple urban tasks. While
our framework also conceptualizes a Spatial-temporal contrast for
learning deep historical and cultural patterns, we leave its experimen-
tal validation for future work, given the difficulty of collecting the
necessary ground-truth data for its corresponding downstream tasks.
Experimental results demonstrate that different contrastive learning
objectives can learn different types of features that are more suitable
for their respective urban tasks. We also conduct an in-depth analysis
of the reasons behind the performance of different contrastive methods,
further underscoring the importance of targeted learning strategies.
This study systematically explores representation learning strategies
in urban studies based on street view images, provides a valuable
benchmark, and enhances the applicability of visual data in urban
science.

2. Related work
2.1. Street view representation learning for urban tasks

Street view imagery has been widely used in various urban tasks
(Gebru et al., 2017; Naik et al., 2017), such as road defect detec-
tion (Chacra & Zelek, 2018), traffic prediction (Zhang, Li, & Zhang,
2024), urban function recognition (Huang et al., 2023), and socioe-
conomic prediction (Fan et al., 2023). However, existing research on
street view representation often relies on supervised models trained on
datasets like Places365 (Zhou et al., 2017) or directly uses the pixel
proportions of semantic segmentation results. These approaches fail to
fully capture the rich semantic information embedded in street view
imagery. Unlike natural images, street view imagery not only contains
complex visual semantics but also encodes valuable spatiotemporal
information in its metadata. Effectively representing this dual semantic
nature — both visual and spatiotemporal — remains a significant
challenge for improving its use in urban tasks. Although a few studies
have explored spatiotemporal self-supervised learning approaches to
represent street view imagery (Stalder et al., 2024), these methods
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Fig. 2. Spatiotemporal contrastive learning with street view images for diverse urban tasks. Temporal relations are constructed by capturing images from the same
location at different times (e.g., 2018-2024), while spatial relations are established using nearby images taken at the same time. The temporal contrast captures
temporal-invariant features (e.g., buildings, roads, infrastructure), while the spatial contrast captures spatial-invariant neighborhood atmosphere, reflecting the
physical, social, and cultural environment. Different representation learning strategies are designed to support various urban tasks, such as visual place recognition,

safety perception, and socioeconomic prediction.

fail to explore the natural meanings of the spatiotemporal attributes of
street view imagery and how to leverage these attributes to construct
self-supervised methods suitable for various urban tasks. For instance,
Urban2Vec (Wang, Li, & Rajagopal, 2020) incorporates spatial informa-
tion into self-supervised training by constructing positive sample pairs
based on nearest neighbors, while KnowCL (Liu et al., 2023) integrates
knowledge graphs with contrastive learning to align locale and visual
semantics, improving the accuracy of socioeconomic prediction using
street view imagery.

2.2. Self-supervised representation learning for images

Self-supervised learning (SSL) aims to leverage large amounts of
unlabeled data to learn effective feature representations by designing
proxy tasks based on the inherent structure of the data itself. This
approach reduces reliance on manually annotated datasets, making it
a powerful paradigm for representation learning. In computer vision,
contrastive learning stands out as one of the most widely adopted
SSL methods. These methods train models using discriminative pretext
tasks, with the core idea of learning robust data representations by dis-
tinguishing between different samples (Caron et al., 2021; Chen & He,
2021; Wu et al., 2018). Notable examples of contrastive learning algo-
rithms include SimCLR, MoCo, and BYOL (Chen et al., 2020, 2021; Grill
et al., 2020; He et al., 2020). While these approaches have achieved
significant success, they predominantly focus on natural images lacking
spatiotemporal context, often targeting classic computer vision tasks
such as semantic segmentation and object detection. These tasks re-
quire encoding as much information as possible from static images.
However, urban tasks involving street view imagery present distinct
challenges, where spatial and temporal dependencies play a critical
role in capturing the dynamics of urban environments. To address these
challenges, spatiotemporal self-supervised learning extends traditional
SSL methods by incorporating temporal coherence (Manas et al., 2021;
van den Oord et al., 2019) and geographic context (Ayush et al., 2021;
Deuser et al., 2023; Guo et al., 2024; Klemmer et al., 2024; Mai et al.,
2023). These adaptations have proven effective in domains like remote
sensing and multi-view learning, yet their application to street view
imagery remains underexplored. A more integrated spatiotemporal self-
supervised framework is essential to better model the dynamic nature
of urban landscapes and enhance the performance of urban-related
applications.

3. Learning street view representations with spatiotemporal con-
trast

Our approach to learning urban representations is guided by the
spatiotemporal contrastive learning framework (Fig. 1), a unified frame-
work designed to leverage the unique attributes of street view imagery.
This framework organizes representation learning along two fundamen-
tal axes that define how positive pairs are constructed: the spatial axis,
which considers whether pairs are from the same place or different
locations within a neighborhood, and the time axis, which consid-
ers whether they are from the same time. This creates four distinct
quadrants of contrastive learning, each designed to isolate a specific
type of urban feature: Instance Contrast, Temporal Contrast, Spatial
Contrast, and the conceptual Spatial-temporal Contrast. It is important
to note that GSV-self, GSV-spatial, and GSV-temporal represent distinct
contrastive learning objectives used to train the model. This section
details the specific implementation of these learning strategies (Fig. 2).

3.1. Instance contrast learning

Instance Contrast Learning serves as the foundational strategy in our
framework, designed to extract robust features from individual street
view images. This approach is built on the core principle of contrastive
learning: learning representations by minimizing the distance between
positive samples and maximizing the distance from negative samples
in a feature space. Crucially, in Instance Contrast, a positive pair is
generated by applying two different random augmentations (e.g., crop-
ping, color jitter) to the same source image, creating two distinct but
semantically identical views. All other images in a batch are treated as
negative samples.

By optimizing the InfoNCE loss function, the model learns to re-
duce the distance between positive pairs in the feature space and
increase the distance from negative samples, thus improving the feature
representation learning.

To learn augmentation invariance, we define the instance con-
trastive loss. Given a positive pair of augmented views (x;, x;) derived
from the same source image, the instance contrastive loss is:

exp (x; - x;/7)

Li=-log
exp (x; - x;/7) + X x; exp (x; - x; /1)

@
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where x; and x; are the feature representations of the positive aug-
mented views, and x; represents the negative samples. This loss en-
courages the model to maximize the similarity between different views
of the same image while minimizing their similarity to all other images.
Building on this contrastive learning framework, we introduce temporal
and spatial contrasts for constructing positive pairs from street view
images.

To enable the use of a large and consistent dictionary of negative
samples without the need for massive batch sizes, we adopt a momen-
tum encoder framework (He et al.,, 2020). In this approach, the key
representations (k* and k™) are generated by a separate momentum
encoder. Crucially, this encoder is not updated through backpropaga-
tion, which prevents the dictionary keys from becoming inconsistent
as the model trains. Instead, its parameters (6,) are a slowly evolving
exponential moving average of the query encoder’s parameters (6,):

O < mO, +(1—m)o,

With a high momentum coefficient m (e.g., 0.999), this method
ensures that the keys in our dynamic dictionary remain consistent,
providing a stable target that is essential for effective contrastive
learning. The following sections introduce our novel temporal and spa-
tial contrastive strategies. They are built upon this same foundational
architecture — using InfoNCE loss and a momentum encoder — but
critically redefine the method for constructing positive pairs to capture
specific spatiotemporal features.

3.2. Temporal contrastive learning

Street view images captured at the same location but at different
times differ from video frames because the intervals between shots
are not fixed. Unlike remote sensing images, street view images taken
at different times are not perfectly aligned in terms of geographic
locations. Due to the typical spatial and angular shifts between images
captured at different times, we define positive temporal pairs based on
their close proximity — such as being taken just a short distance apart
— and having the same shooting angle, ensuring sufficient consistency
without demanding exact alignment. The historical street view image
set for each location can be represented as T = [t,,1,, ...,1,], where ¢;
denotes the images captured at different times. Since the number of
images varies for each location, resulting in different values of n, we
randomly selected two images from different time periods within each
set to serve as a positive pair. The aim of temporal contrast is to capture
the invariant features of the same location over time. This means that
even though the images are taken at different times, the model should
learn to recognize the consistent characteristics of the scene.

To capture invariant features of the same location over time, we
define the temporal contrastive loss. Given a positive sample pair (7;,1;)
that meets temporal conditions ((images taken in close proximity and
from the same angle)), the temporal contrastive loss is:

. exp (t,»tj/r)

exp (t;-1,/7) + Zt; exp (t; - 17 /7)
where 1, and ¢; are feature representations of the positive temporal
samples, 7, denotes negative samples from different locations or angles,
and 7 is the temperature parameter for scaling. This formulation aims

to maximize similarity between the same location’s images taken at
different times while minimizing similarity to negatives.

Lo=-lo 2

3.3. Spatial contrastive learning

Capturing the spatial consistency of an urban area is essential
for accurately representing the urban physical environment. Spatial
consistency refers to the ability to recognize that different locations
within the same urban area still represent the same underlying physical
characteristics. To achieve this, we treat all street view images captured
within a specific urban area as sharing a common set of environmental
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characteristics, even if these images are taken from different angles or
slightly different positions. This approach allows the model to account
for variations in location while preserving the overall ambiance of
the area. The set of street view images for a given urban area can
be denoted as S = {s;,s,,...,s,}, where each s; represents an image
captured within the defined area. These images collectively provide
a comprehensive spatial representation of the urban environment. We
randomly select two samples (s;, s;) from the set S and treat them as
positive pairs. This encourages the model to learn that despite slight
variations in shooting angle or position, the images are part of the same
spatial context.

To capture spatial consistency within an urban area, we define
the spatial contrastive loss. Given a set of street view images S =
{s1,59,...,5,} from the same urban area, we randomly select two
samples (s;, s;) as a positive pair and define the spatial contrastive loss
as:

exp (s,- -sj/r)
exp (s,- . s/-/r) + ZS; exp (s,- . s;/r)

L =—log 3

S
where s; and s; are feature representations of the positive spatial
samples, and s, represents negative samples from different urban areas.
This loss encourages the model to maximize similarity between images
in the same urban area while minimizing similarity to negatives from
other areas. By doing so, we enable the model to learn consistent and
representative spatial features across the entire urban area.

3.4. Spatial-temporal contrastive learning

The fourth quadrant of our framework, Spatial-temporal Contrast,
involves constructing positive pairs from images of different nearby
locations taken at different times. The objective is to learn spatial-
temporal invariance, forcing the model to discover the long-term core
identity of a neighborhood. By filtering out both short-term temporal
dynamics and hyperlocal spatial details, this representation would the-
oretically capture the enduring architectural character and functional
essence of a region.

Formally, given a positive spatial-temporal pair (st;,st;), the loss
function would be defined as:

exp (sti . stj/r)

Ly =-1
o o8 exp (st; - st;/7) + ZS,; exp (st; - st /7)

C)

where st; and st; are the feature representations of the positive pair, and
st,, denotes negative samples from unrelated regions or time periods.

While conceptually powerful, we did not experimentally implement
spatial-temporal contrast in this work. The primary challenge lies in
identifying suitable downstream tasks and corresponding benchmark
datasets for validation. Tasks that would benefit from such a represen-
tation, like analyzing the long-term evolution of urban fabric, require
large-scale, longitudinal data that is often not readily available for stan-
dardized evaluation. Therefore, we posit this strategy as a promising
and significant direction for future research, which will build upon the
foundational work presented here.

4. Applying task-centric representations to urban applications

Urban environments exhibit both spatial and temporal complexities
—Ilocations change over time yet retain inherent characteristics, and
different areas share structural similarities while maintaining distinct
identities. Capturing these dynamics is essential for understanding
cities, making tasks such as visual place recognition, socioeconomic
prediction, and safety perception natural benchmarks for evaluating
our contrastive learning framework. We assess their effectiveness across
these urban tasks by pre-training models using self-supervised learning
on temporal and spatial contrastive datasets. We also analyze how
different contrastive strategies influence learned urban representations.
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4.1. Urban tasks description

Understanding urban environments involves recognizing locations
under varying conditions, inferring socioeconomic patterns from visual
cues, and assessing perceived safety. Each of these tasks inherently
involves distinct spatial and temporal challenges that align with our
contrastive learning objectives. These three urban tasks — visual place
recognition, socioeconomic prediction, and safety perception — collec-
tively test a model’s ability to disentangle invariant and dynamic urban
features, as detailed below.

Visual place recognition. Locations undergo seasonal changes,
construction, and variations in lighting, yet key structural elements
remain invariant. The challenge in visual place recognition is to dis-
tinguish locations while being robust to these transient variations. A
model that captures invariant features while ignoring irrelevant fluctu-
ations improves visual place recognition performance. We evaluate vi-
sual place recognition performance using multiple datasets that capture
diverse environmental variations. The CrossSeason dataset (Mans Lars-
son et al., 2019) focuses on seasonal changes, testing model robustness
to variations in snow, foliage, and lighting throughout the year. The
ESSEX dataset (Zaffar et al., 2021) introduces viewpoint and light-
ing diversity in urban and suburban settings, challenging the model’s
ability to recognize places under different perspectives. The Pittsburgh
dataset (Arandjelovi¢ et al., 2018) extends this by incorporating large-
scale street view imagery from Pittsburgh, supporting localization and
geographic recognition. The SPED dataset (Chen et al., 2018) em-
phasizes temporal changes, containing images captured at different
times to study scene dynamics and urban transformation. Lastly, the
MapillarySLS dataset (Warburg et al., 2020) provides a globally dis-
tributed dataset with diverse street view images, aiding in tasks such as
autonomous driving and broad-scale visual recognition. Together, these
datasets comprehensively evaluate the model’s ability to handle spatial,
temporal, and environmental variations in visual place recognition.

Socioeconomic prediction. The urban environment reflects socioe-
conomic characteristics through its visual features, from infrastructure
quality to commercial density. Inferring socioeconomic indicators re-
quires recognizing patterns that extend beyond individual images to the
broader urban context. A model that associates images from the same
area while distinguishing them from those in different socioeconomic
conditions provides stronger predictive capability. In our urban task,
we used socioeconomic indicators provided by Fan et al. (2023), which
include data from seven major metropolitan areas in the United States.
The socioeconomic indicators cover various topics relevant to urban
studies and are detailed in Table 1.

Safety perception. Perceived safety is influenced by multiple vi-
sual factors, including lighting, greenery, building conditions, and the
openness of spaces, which vary across both space and time. A robust
safety perception model could capture safety-related features while
adapting to temporal changes caused by urban development or daily
cycles. To evaluate our approach, we use PlacePulse 2.0 (Dubey et al.,
2016), a large-scale dataset containing crowdsourced safety perception
ratings for urban scenes. This dataset provides a diverse range of
environments, enabling models to learn and generalize safety-related
visual cues across different geographic and temporal contexts.

These urban tasks naturally reflect the challenges of disentangling
invariant characteristics from dynamic variations, a fundamental ob-
jective in learning urban representations. Evaluating our contrastive
learning models on these benchmarks allows us to assess their ability
to capture meaningful urban features that generalize across different
environments.

4.2. Street view data and pre-training datasets

We collect street view imagery to develop pre-training datasets
for self-supervised learning models targeting urban tasks. Then, we
apply our spatiotemporal contrastive framework to pre-train models,
effectively capturing urban characteristics.
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4.2.1. Data collection and preprocessing

To obtain street view imagery for both self-supervised model train-
ing and socioeconomic prediction, we first sourced road network data
for each city using the OSMnx library (Boeing, 2017) from Open-
StreetMap. We then generated query points along these road networks
at regular intervals of 15 m. The Google Street View (GSV) Application
Programming Interface (API) was subsequently utilized to retrieve and
download street view images.

Since the visual place recognition and safety perception datasets
include a wide range of street view images from different cities, while
the socioeconomic prediction task focuses more on local city charac-
teristics, we constructed two separate datasets — a global version and
a local version — for testing on different urban tasks. For the global
version, to capture a broad spectrum of urban environments, we trained
our self-supervised models on data collected from ten diverse and
representative global cities including Amsterdam, Barcelona, Boston
Metropolitan Area (Boston), Buenos Aires, Dubai-Sharjah (Dubai), Jo-
hannesburg, Los Angeles, Melbourne, Seoul, and Singapore. These cities
were carefully selected to encompass a variety of geographical loca-
tions, cultural backgrounds, and urban forms, ensuring the diversity
and richness of our training dataset. We collected historical images of
ten global cities from the GSV API, which resulted in a total of over 42
million street view images used for pre-training. For the local version,
we selected street view images from Los Angeles to construct different
contrastive datasets tailored to the specific needs of the socioeconomic
prediction task in that city. The construction methods of datasets are
similar to the global version.

4.2.2. Pre-training datasets construction

Based on the street view pre-training datasets, we constructed
three distinct contrastive datasets corresponding to different contrastive
learning models for both global and local versions: instance contrast,
temporal contrastive, and spatial contrastive datasets. To benchmark
against the MoCov3 baseline trained on ImageNet, each dataset was
standardized to consist of 1 million image pairs. This uniform dataset
size facilitates a fair comparison among the models by ensuring that
each receives an equal amount of training data.

Instance contrast dataset. For the instance contrast dataset, we
randomly selected 100,000 images from each of the 10 cities, resulting
in a total of 1 million images. Positive pairs were generated during
training by applying data augmentation techniques to these images, fol-
lowing the settings used in MoCo v3 (Chen et al., 2021). Additionally,
for the local version, we constructed an instance contrast dataset based
solely on Los Angeles using the same method.

Temporal contrastive dataset. In constructing the temporal con-
trastive dataset, we randomly selected 100,000 street view sampling
points from each of the 10 cities, totaling 1 million sampling points.
At each sampling point, we retrieved images taken at different times
but in close proximity, specifically within 5 m, and from the same
shooting angle. This constraint ensures that the images remain spatially
and visually consistent despite temporal differences, minimizing the
impact of significant positional or perspective shifts on the temporal
contrastive learning process. Two images were randomly selected from
the temporal sequence to form a positive pair, resulting in 1 million
temporal positive pairs. Similarly to the instance contrast dataset, we
constructed an additional temporal contrastive dataset based solely on
Los Angeles using the same method.

Spatial contrastive dataset. For the global spatial contrastive
dataset, we defined a 100-meter buffer zone as the spatial unit for
contrastive analysis. This 100-meter radius was selected to provide a
standardized spatial scale across different countries, as national census
units vary significantly in size and definition, necessitating a uniform
buffer for consistent global comparisons. From each buffer zone, we
randomly selected two images to form positive pairs, and out of all the
spatial positive pairs generated, we then randomly selected 1 million
pairs to create the spatial contrastive dataset. Notably, we did not
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Table 1
Socioeconomic Indicators for Urban Prediction: Crime, Health, Poverty, and Transport Metrics by Spatial Unit.

Topic Indicator Label

Crime Violent crime occurrence per spatial unit Log(Violent Crime)
Violent theft-related crime occurrence per spatial unit Log(Petty Crime)

Health Model-based estimate for crude prevalence of % Cancer Health
cancer (excluding skin cancer) among adults aged > 18 years
Model-based estimate for crude prevalence of % Diabetes
diagnosed diabetes among adults aged > 18 years
Model-based estimate for crude prevalence of % LPA
no leisure-time physical activity among adults aged > 18 years
Model-based estimate for crude prevalence of % Mental Health
mental health not good for > 14 days among adults aged > 18 years
Model-based estimate for crude prevalence of % Obesity
obesity among adults aged > 18 years
Model-based estimate for crude prevalence of % Physical Health
physical health not good for > 14 days among adults aged > 18 years

Poverty Median Household Income Log(Income)
% Individuals with poverty status determined: % Poverty Line (100%)
below 100% poverty line
% Individuals with poverty status determined: % Poverty Line (200%)
below 200% poverty line

Transport % Population (>16) commute by driving alone % Drive Alone

Estimated personal miles traveled on a working weekday
Estimated personal trips traveled on a working weekday
Estimated vehicle miles traveled on a working weekday
Estimated vehicle trips traveled on a working weekday
% Population (>16) commute by public transit

% Population (>16) commute by walking and biking

PMT

PTRP

VMT

VTRP

%Public Transit
%Walk

impose restrictions on the shooting angle for these positive pairs, allow-
ing the model to focus on the broader urban environment rather than
specific street layouts. In contrast, for the local version, we adopted
U.S. census block groups (CBGs) as the spatial units for contrastive
analysis, leveraging their standardized definition across the United
States. Positive pairs were constructed based on the boundaries of these
CBGs, aligning the spatial scale with the U.S.-specific socioeconomic
dataset.

4.2.3. Pre-training details

We use AdamW (Loshchilov & Hutter, 2019) as the optimizer, a
common choice for training ViT base (Dosovitskiy et al., 2021) models,
with a weight decay of 1e—6. For each dataset, we use a mini-batch
size of 1024 and an initial learning rate of 6e—6. The model is trained
for 300 epochs, starting with a 40 epoch warmup (Goyal et al., 2018),
followed by a cosine decay schedule for learning rate decay (Loshchilov
& Hutter, 2017). Training the ViT Base model for 300 epochs on 4
Nvidia A800 GPUs takes approximately 71 h.

5. Results

We evaluate our models on three tasks — visual place recogni-
tion, socioeconomic prediction, and safety perception — each aligning
with different contrastive learning strategies. Visual place recognition
benefits from temporal contrastive learning to enhance stability across
time. Socioeconomic prediction relies on spatial contrastive learning
to capture neighborhood patterns. Safety perception leverages instance
contrast learning to extract global scene features. These contrastive
objectives enable our model to learn robust and transferable urban
representations.

To demonstrate the effectiveness of our proposed methods, we
benchmark their performance against several comparators. Our base-
lines include Urban2Vec (Wang, Li, & Rajagopal, 2020), a prominent
urban representation method that we retrained on our Spatial con-
trastive dataset for a fair comparison, where we exclusively employed
the visual component and excluded the POI module to ensure a direct
evaluation of street view representations; Urban2Vec-ViT, a variant
where we replaced the original Inception-V3 backbone with ViT-Base
to ensure architectural consistency with our proposed models; and

ImageNet-self, a model pre-trained on ImageNet with the MoCo-v3
self-supervised method to test the transferability of general visual
features (Chen et al., 2021). In addition, we establish a direct base-
line, GSV-self, using instance-level contrastive learning on our Google
Street View dataset. We evaluate these models against our proposed
GSV-spatial and GSV-temporal approaches, which explicitly learn from
spatial and temporal relationships, respectively. This comprehensive
comparison is designed to highlight the unique advantages of incor-
porating spatiotemporal context into representation learning for urban
environments.

5.1. Visual place recognition

Visual place recognition is a crucial urban task that aims to identify
specific locations based on visual input. This task requires the removal
of temporal disturbances to focus on invariant information that does
not change over time, demanding feature extraction that effectively
distinguishes constant characteristics in the environment to improve
recognition accuracy.

To evaluate the model’s performance in visual place recognition
tasks, we used several benchmark datasets: CrossSeason (Mans Larsson
et al., 2019), Essex (Zaffar et al., 2021), Pitts250Kk, Pitts30k (Arand-
jelovi¢ et al., 2018), SPED (Chen et al., 2018), and MapillarySLS (War-
burg et al., 2020) datasets. Detailed information about these benchmark
datasets is described in Section 4.1. We formulate VPR as a large-
scale image retrieval task. For each dataset, the test images serve as
“queries”, which are used to search against a large, geotagged database
of images. The objective is to retrieve the database images that are
geographically closest to the true location of the query image.

The models were tested by freezing the backbone of the pre-trained
ViT and extracting the [CLS] token for visual place recognition tasks.
We assessed performance using the Recall@K metric, measuring the
models’ ability to correctly identify query image locations among the
top-k most similar database images.

The critical test for temporal and environmental invariance lies
in how these query and database sets are constructed: images of the
same location are deliberately captured under different conditions. For
instance, in the CrossSeason dataset, the database may consist of images
collected in summer, while the corresponding queries are the same
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Fig. 3. Performance comparison on different visual place recognition datasets (Recall@K in %).

locations captured in winter. A high Recall@K score in this scenario
indicates that the model has successfully learned a representation that
is robust to drastic seasonal changes (e.g., snow, foliage, lighting)
and focuses on the underlying, invariant structural features of the
place. This same principle of mismatched conditions is applied in other
datasets to test for different invariances, such as long-term changes in
SPED and viewpoint shifts in ESSEX.

In Fig. 3, the GSV-temporal model demonstrates exceptional perfor-
mance on the CrossSeason dataset, achieving a recall value of 100%
across all K values. This indicates its robust capability in cross-season
visual place recognition tasks. In contrast, GSV-self and ImageNet-self
exhibit significantly lower performance, suggesting their inability to
effectively capture temporal invariant features. On the Essex dataset,
GSV-temporal maintains a recall value exceeding 75%, with values of
99.05% for both K = 20 and K = 25. This highlights its insensitivity
to dynamic changes in the environment, which allows it to outperform
other models in this context. In the Pitts250k dataset, GSV-temporal
consistently outperforms GSV-self and ImageNet-self in recall values,
the GSV-temporal model also excels on the Pitts30k dataset, achieving
a recall value of 90.23% at K = 15. underscoring its suitability for
complex urban environments in visual place recognition tasks. For the
SPED dataset, GSV-temporal displays superior recall values compared
to other models, particularly with a notable performance at K = 5.
In the MapillarySLS dataset, GSV-temporal showcases its outstanding
performance again, with a recall value of 77.57% at K = 15.

In summary, the GSV-temporal model consistently outperforms
other models across multiple datasets, particularly in visual place
recognition tasks. Its insensitivity to temporal and environmental
changes positions it as a superior choice for this application, revealing
significant potential for practical use.

5.2. Socioeconomic prediction
The socioeconomic prediction task uses street view images to infer

the socioeconomic status of urban areas. It emphasizes learning the
overall ambiance of a region rather than specific geometric features,

highlighting the need for feature extraction to focus on similarities
between regions to understand economic conditions and developmental
dynamics better.

In the urban task of predicting socioeconomic indicators, we uti-
lized the socioeconomic dataset published by Fan et al. (2023), which
contains 18 socioeconomic indicators across seven major cities in the
United States (Table 1). We take the socioeconomic prediction of Los
Angeles as an example. Detailed descriptions are provided in Sec-
tion 4.1. We first extracted street view features from the images using
the pre-trained models of the local version. These features were then
aggregated using the mean values at the block group level. The ag-
gregated features were used as input features to predict socioeconomic
indicators for each block group.

For prediction model training and evaluation, we split each city’s
dataset into a training set (70%) and a testing set (30%). We used
LASSO (Tibshirani, 1996) as the regressor to evaluate the predictive
performance of the image features extracted by the different pre-trained
models. Additionally, we applied 5-fold cross-validation to ensure ro-
bust evaluation. This approach allows for a fair comparison of the
different contrastive learning models in capturing visual features that
are meaningfully correlated with socioeconomic indicators.

The results of socioeconomic predictions are shown in Table 2.
Overall, models pre-trained on street view images significantly out-
perform the model pre-trained on the ImageNet dataset. Specifically,
across all 18 indicators, the model pre-trained on the general ImageNet
dataset achieved an average R’ of 0.5209. while the prominent street-
view-based method Urban2Vec scored 0.3464. In contrast, models on
street view images achieved average R? scores of 0.5609 for instance
contrast, 0.5714 for temporal contrastive, and 0.5888 for spatial con-
trastive models, respectively. Furthermore, both temporal and spatial
contrastive pre-training models capture more socioeconomic-related
information compared to the instance contrast approach, with spatial
contrastive demonstrating the highest performance. This trend is con-
sistent across most socioeconomic indicators, showing the strongest
predictive performance for Health-related indicators and the least for
Crime-related indicators.
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Model performance comparison on socioeconomic prediction tasks based on LASSO across contrastive models.

Topic Label Urban2Vec Urban2Vec-ViT GSV-self GSV-spatial GSV-temporal ImageNet-self
Crime Log(Violent Crime) 0.2369 0.3139 0.4203 0.4287 0.4194 0.4146
Log(Petty Crime) 0.0634 0.1179 0.1810 0.1877 0.1892 0.1667
Total 0.1501 0.2159 0.3007 0.3082 0.3043 0.2906
Health % Cancer Health 0.3275 0.4216 0.6644 0.6969 0.6618 0.6053
% Diabetes 0.3158 0.422 0.6589 0.6942 0.6796 0.6172
% LPA 0.4458 0.5708 0.8001 0.8337 0.8221 0.7671
% Mental Health 0.4206 0.4749 0.7088 0.7510 0.7291 0.6753
% Obesity 0.3861 0.4432 0.7628 0.7886 0.7797 0.7175
% Physical Health 0.3980 0.4497 0.7120 0.7399 0.7314 0.6752
Total 0.3823 0.4637 0.7178 0.7507 0.7340 0.6763
Poverty Log(Income) 0.3278 0.4438 0.6561 0.6816 0.6735 0.6096
% Poverty Line (100%) 0.1246 0.1567 0.1948 0.2227 0.1833 0.1718
% Poverty Line (200%) 0.3469 0.4454 0.6154 0.6377 0.6401 0.5893
Total 0.2663 0.3486 0.4888 0.5140 0.4990 0.4569
Transport % Drive Alone 0.1765 0.2591 0.3841 0.3991 0.3835 0.3582
PMT 0.2974 0.4349 0.6196 0.6447 0.6289 0.5379
PTRP 0.3269 0.4168 0.6024 0.6385 0.6087 0.5302
VMT 0.4072 0.4645 0.6647 0.6921 0.6874 0.6163
VTRP 0.3741 0.4888 0.6900 0.6994 0.6991 0.6436
%Public Transit 0.1162 0.4237 0.5226 0.5700 0.5339 0.4726
%Walk 0.2636 0.2551 0.2383 0.2925 0.2340 0.2080
Total 0.2803 0.3918 0.5317 0.5623 0.5394 0.4810
Overall Total 0.3464 0.3890 0.5609 0.5888 0.5714 0.5209

Table 3
Evaluation metrics of different models on the safety perception classification
task.

Model Accuracy (%) Recall (%) F1 Score (%) AUC Score (%)
Urban2Vec 79.25 64.52 69.44 76.12
Urban2Vec-ViT 80.94 67.58 70.54 78.11
ImageNet-self 83.25 70.32 75.43 80.51
GSV-temporal 84.91 65.16 75.94 80.72
GSV-spatial 86.08 68.39 78.23 82.33
GSV-self 88.68 77.42 83.33 86.29

These findings suggest that spatial contrastive pre-training effec-
tively captures the overall ambiance of urban areas, enabling more
precise predictions of regional socioeconomic information. Addition-
ally, temporal contrastive pre-training filters out random factors and
dynamic elements in the images, enhancing the reliability of socioeco-
nomic predictions.

5.3. Safety perception

The safety perception task involves using street view imagery to
estimate how safe people perceive a given scene to be. To make
accurate estimates, this task requires analyzing all relevant elements
within the scene, as each can contribute to the overall perception of
safety, particularly elements such as trees and vehicles (Zhang et al.,
2018).

We selected the PlacePlus 2.0 (Dubey et al., 2016) dataset for the
urban task of human environmental perception, filtering out over 1144
images with safety perception scores below 3.5 and above 6.5, with
80% of the data used for training and 20% for testing. The model was
trained using a linear binary classification approach for 20 epochs to
effectively distinguish between low and high safety perception environ-
ments.

Table 3 compares the performance of various models in classifying
safety perception in urban environments. As a baseline, the Urban2Vec
model achieved an accuracy of 79.25% and an F1 score of 69.44%. In
an improvement over this and all other methods, the GSV-self model
achieved the highest performance, with a top accuracy of 88.68% and
recall of 77.42%. This demonstrates its effectiveness in identifying both
safe and unsafe environments while minimizing false negatives. Its F1
score of 83.33% indicates a balance between precision and recall, and

the AUC score of 86.29% further confirms its ability to distinguish
between safety levels across thresholds. Overall, the GSV-self model
outperforms the others in all metrics, underscoring the strength of
instance-level contrastive learning for urban safety perception tasks.

6. Discussion

We conduct interpretability analyses on the features learned by
the different contrastive models to gain a deeper understanding of the
information the models focus on and how this impacts performance on
urban tasks.

6.1. Analysis of differences in spatiotemporal contrastive features

This section explores the differences in feature representation and
retrieval tasks by comparing the Instance, Spatial, and Temporal con-
trastive methods. We use street view images from Chicago, analyzing
the performance of these three contrastive methods in pre-trained
models. For each model pre-trained with a unique contrastive learning
objective, we extract a 768-dimensional feature vector representing
the characteristics of street view images. In our experiment, to com-
prehensively evaluate the retrieval performance of these methods, we
randomly selected 500 street view images from different locations in
Chicago as query images, ensuring that each image originated from a
distinct spatial location. For each query image, we used the Nearest
Neighbors method in feature space to retrieve the top five street view
images with the closest Cosine distance. This process generated a total
of 500 sets of query and retrieval pairs, with five results for each query.
Specifically, we used the Euclidean distance as a similarity measure to
rank and obtain the top five retrieval results.

Finally, we randomly selected one set of queries and retrieval results
for visualization. By comparing the year, heading, and feature distance
of the retrieved results with the query image, we visually demonstrated
the significant differences in retrieval characteristics among the three
contrastive methods. Fig. 4 shows the retrieval results for a given
query street view image using GSV-self, GSV-spatial, and GSV-temporal
contrastive methods. On the left, the query image is displayed, in-
cluding information about the year of capture (June 2018), heading
(90°), geographic location (42.3951, 71.1217), and city (Chicago). The
retrieval results are arranged in three rows, corresponding to the GSV-
self, GSV-spatial, and GSV-temporal methods (Fig. 2). Each row shows
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Fig. 4. Comparison of retrieval results using GSV-self, GSV-spatial, and GSV-temporal methods for a given query image (Year: 2018, Heading: 90°, Location:
Chicago). Each row corresponds to the top-5 retrieved street view images based on different self-supervised pertained models, ranked by image feature similarity
to the query image. The GSV-temporal results are all within a 10-meter radius and have identical heading angles, but correspond to different time periods,
demonstrating temporal invariance of the learned image representations. The GSV-spatial results cover a larger geographic area with nearby timeframes,

maintaining a consistent overall ambiance.

the top five most similar retrieval results, ranked from left to right (1st
to 5th). Below each retrieved image, the year of capture, heading, and
actual distance from the query image (in meters) are indicated. The
GSV-self method retrieves the nearest street view images based on deep
feature similarity. From the comparison, it can be seen that although
the retrieved images are from different locations, they are very similar
to the query image in feature space, indicating that GSV-self emphasizes
overall visual feature similarity without considering consistency in
geographic location, heading, or time. The GSV-spatial retrieval results
cover a larger geographic area, allowing for greater spatial variation
while aiming to maintain a similar overall ambiance and temporal prox-
imity. It can be observed that most of the retrieved street view images
are relatively dispersed in space, but the overall ambiance and time
are relatively close, reflecting spatial and environmental consistency.
This allows GSV-spatial to capture visually similar urban characteristics
across different locations. The GSV-temporal retrieval results maintain
the same heading and are strictly limited to within a 10-meter radius,
highlighting temporal diversity. While the position and heading are
mostly unchanged, the retrieved images come from different years. This
approach demonstrates sensitivity to temporal changes while keeping
other factors consistent, thereby showcasing the variation of the same
location across different years.

6.2. What do GSV-temporal and GSV-spatial contrastive objectives learn
from GSV?

Our experimental results reveal that different contrastive learning
methods excel in different tasks: Temporal contrastive performs excep-
tionally well in visual place recognition tasks, Spatial contrastive shows
better results in macroeconomic prediction tasks, and Self contrastive
achieves the best performance in safety perception tasks, confirming
our hypothesis that street view images captured at the same location
over time enable contrastive learning tasks to uncover the temporal-
invariant characteristics of the urban environment. Similarly, spatially
proximate street view images from the same period facilitate learning
tasks to capture the spatial-invariant neighborhood ambiance, such
as the socioeconomic overall ambiance. To further understand how

different models allocate their attention to various aspects of the input,
we visualized the attention maps in ViT and evaluated the spatial extent
of attention using attention distance. This analysis reveals the distinct
focus areas of each model, shedding light on their feature extraction
preferences.

6.2.1. GSV-temporal learns temporal invariant characteristics, and GSV-
spatial learns invariant neighborhood ambiance

To provide a more intuitive and interpretable visualization of what
our models learn, we employ Grad-CAM (Selvaraju et al., 2017) to
generate attention heatmaps (Fig. 5). This method highlights the image
regions most influential to the model’s final representation. We selected
two street view images from the same location but captured five years
apart (2012 vs. 2017), allowing us to observe how each contrastive
learning strategy handles temporal changes.

As shown in Fig. 5(a) and (d), the GSV-self model, trained with
instance-level contrast, tends to focus on the most visually salient
objects in each image independently. For instance, in the 2012 image,
its attention is drawn to the dark SUV and prominent building facades.
In the 2017 image, its focus shifts to the white van and different
storefronts. This indicates that GSV-self learns strong general features
but does not inherently distinguish between permanent and transient
elements of the scene.

The GSV-temporal model demonstrates a clear ability to learn time-
invariant characteristics. In both Fig. 5(b) and (e), the model focuses on
permanent structures such as the building architecture on the left and
right, the overall street layout, and the horizon. Crucially, it learns to
ignore transient objects like cars and pedestrians, which are present in
different positions and forms across the years. The attention on vehicles
is significantly suppressed compared to GSV-self. This visualization
provides evidence that temporal contrast effectively filters out dynamic
elements to capture the stable, enduring characteristics of a location.

The GSV-spatial model exhibits a distinctly different pattern. As
seen in Fig. 5(c) and (f), its attention is much more holistic and
diffuse, spreading across the entire scene. Rather than focusing on
specific objects, it captures the overall atmosphere”—encompassing
the buildings, street, sky, and foliage collectively. The attention pat-
terns between 2012 and 2017 are remarkably similar in their broad
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Fig. 5. Grad-CAM visualization of model attention under different contrastive learning strategies. The heatmaps show the focus of three models on street view
images of the same location captured at different times (top: 2012, bottom: 2017). (a, d) GSV-self (instance contrast) focuses on salient objects within individual
images. (b, €) GSV-temporal (temporal contrast) learns to focus on time-invariant structures, such as building facades, while ignoring dynamic objects like vehicles.
(c, f) GSV-spatial (spatial contrast) exhibits a broader, holistic attention, capturing the overall scene ambiance.

scope, suggesting the model learns the invariant spatial context and
layout of the neighborhood. This supports our hypothesis that spatial
contrast encourages the model to learn the ambient characteristics of
an environment rather than focusing on individual, dynamic objects

To provide quantitative support for these visual observations, we
evaluate the spatial extent of self-attention using attention distance
(Dosovitskiy et al., 2021), which measures the mean distance between
query tokens and key tokens, weighted by their respective self-attention
scores. This metric helps assess how different contrastive strategies
focus on various aspects of the scene. Figs. 6(a) and 6(b) show the
attention distances computed for sampled street view images and Im-
ageNet images. Depth corresponds to the network layers in the ViT
model, ranging from shallow (Depth 1) to deep layers (Depth 12).
Larger attention distances indicate that the model captures more glob-
ally distributed features, while smaller distances suggest a focus on
local patterns. Specifically, GSV-spatial exhibits the largest attention
distance, indicating a tendency to focus on a broader spatial context
rather than concentrating on individual objects. In contrast, the at-
tention distances of GSV-temporal and GSV-self decrease sequentially,
suggesting a gradual narrowing of focus to capture more specific details
within the scenes. Notably, ImageNet-self demonstrates the smallest
attention distance, reflecting its pre-training on a dataset primarily
consisting of object-centric images, which leads to a greater emphasis
on individual objects over the overall spatial arrangement.

6.2.2. GSV-temporal highlights low-frequencies, and GSV-spatial exploits
high-frequencies

The low-frequency amplitude of an image represents its large-scale
structure and smooth transitions, primarily encompassing the back-
ground, gradient regions, and general contours. It reflects the overall
form of the image and broad variations in brightness. Low-frequency
components are typically key elements in global structure modeling
and scene consistency understanding, which is why their amplitude is
generally larger. In contrast, the high-frequency amplitude of an image
represents finer details, textures, and edges, and is primarily associated
with regions of rapid changes in the image, such as boundaries and
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local contrast variations. Although high-frequency amplitudes are rela-
tively smaller, they are crucial for capturing the sharpness and clarity
of the image and often contain noise signals. In this study, we hypoth-
esize that, compared to GSV-spatial, GSV-temporal is more inclined to
focus on low-frequency information. This is because temporal-invariant
characteristics in street view images rely more on global consistency
and invariant structures, while high-frequency information is more
susceptible to noise interference in dynamic scenes. To test this hypoth-
esis, we compute the amplitude differences in the Fourier-transformed
frequency spectrum of intermediate features across various layers of
the ViT backbone, reporting the relative amplitudes of high and low
frequencies (Park et al., 2023). Specifically, Figs. 6(c) and 6(d) present
the relative amplitude results for ImageNet and GSV images under
different contrast strategies.

The results indicate that models pre-trained on ImageNet focus
more on high-frequency information, while models pre-trained on GSV
emphasize low-frequency information. This difference may stem from
the fact that ImageNet images typically center around object categories
(e.g., animals, plants, etc.) that require detailed edge and texture detec-
tion, thus highlighting high-frequency information. In contrast, street
view images feature large-scale street layouts and global structural
variations, where the models need to capture more low-frequency
information to understand the overall spatial relationships within the
scene. Furthermore, we observe that GSV-temporal exhibits the most
pronounced sensitivity to low-frequency information. This suggests that
the temporal-invariant characteristics prioritize the consistency of static
elements, such as street layouts, while being less sensitive to texture
variations caused by factors like lighting or seasonality. GSV-self, sim-
ilar to GSV-temporal, also focuses more on low-frequency information,
but due to the need to capture dynamic elements such as pedestrian
and vehicular flow, it exhibits a slightly higher relative amplitude
compared to GSV-temporal. On the other hand, GSV-spatial shows a
stronger focus on high-frequency information. This can be attributed to
its lesser sensitivity to the overall street layout, as it is more concerned
with capturing consistency in the surrounding environment, which is
often conveyed through high-frequency details such as window styles,
building facades, and material textures.
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7. Conclusion

In this work, we proposed a self-supervised learning framework,
the spatiotemporal contrastive framework, designed to learn represen-
tations from street view imagery. We systematically implemented and
evaluated three of its core strategies: Temporal Contrast, Spatial Con-
trast, and Instance Contrast. Our experimental results demonstrate that
these distinct strategies effectively learn features tailored for different
urban tasks, achieving significant performance improvements in visual
place recognition, socioeconomic prediction, and safety perception.
Furthermore, our in-depth analysis provides valuable insights into how
each method captures different aspects of the urban environment,
emphasizing the importance of targeted learning strategies. This study
provides a valuable benchmark for self-supervised learning in urban
science and enhances the practical applicability of street view data.

While our implemented strategies perform robustly over typical
time scales, we recognize their limitations when considering long-
term urban evolution spanning several decades. The Temporal Contrast
model, for instance, relies on the assumption that a location’s core
static features (e.g., buildings) persist over time. This assumption may
be challenged in the face of radical urban transformations, such as
large-scale demolitions and redevelopment, which can alter a location’s
visual identity entirely.

This challenge, however, points to a promising future direction that
is already conceptualized within our framework. The fourth quadrant
of our framework, Spatio-temporal Contrast, is designed precisely to
address these long-term dynamics. By learning from different locations
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at different times, it aims to capture a neighborhood’s long-term core
identity, a representation more resilient to drastic structural changes.
Future work should focus on implementing and evaluating this spatio-
temporal strategy. Doing so would extend our framework to model the
dynamics of urban change over much longer timescales and unlock new
applications in longitudinal urban analysis.
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