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 A B S T R A C T

Street view imagery has become an important data source for urban studies, supporting various urban tasks 
such as environmental perception and socioeconomic predictions. Classic methods predominantly rely on 
handcrafted features or supervised machine learning to derive information from the images. However, these 
methods often fail to capture the hierarchical semantics of urban environments: at the visual layer they cannot 
selectively represent dynamic versus static objects, while at the higher contextual layer they cannot abstract 
the collective ambience of a scene beyond tangible visual content, which in turn limits their effectiveness 
in tasks such as place recognition and socioeconomic inference. Essentially, this limitation arises because 
different urban tasks rely on fundamentally different invariances across space and time. To address this 
challenge, we propose the spatiotemporal contrastive learning framework, a novel self-supervised framework 
that systematically organizes representation learning for urban scenes. This framework defines distinct pre-
training strategies by selectively contrasting what remains invariant versus what changes across the dimensions 
of space and time, enabling the model to isolate specific urban features like dynamic elements, static structures, 
or neighborhood ambiance. The validation experiments confirm that each contrastive strategy produces 
specialized representations that significantly outperform established baselines on their corresponding tasks. 
This study provides not only a novel representation framework but also a rigorous benchmark that enhances the 
applicability of visual data in urban science. The code is available at https://github.com/yonglleee/UrbanSTCL.
1. Introduction

With the growing availability of street view imagery (Naik et al., 
2017; Zhang, Salazar-Miranda, et al., 2024), cities are leveraging large-
scale visual data for diverse tasks such as place recognition (Lowry 
et al., 2015), urban perception analysis (Dubey et al., 2016; Zhang 
et al., 2018), road condition assessment (Chacra & Zelek, 2018), and 
socioeconomic prediction (Gebru et al., 2017; Wang, Li, & Rajagopal, 
2020). Unlike classic object-centric vision tasks, these urban applica-
tions focus on distinct aspects of the urban environment. For instance, 
place recognition relies on invariant features including buildings and 
roads, while measuring human perceptions of a place relies on ele-
ments such as building conditions, street lighting, human activities, 
and vegetations to assess the overall perceptions within a scene, and 
socioeconomic prediction focuses on a spatial-invariant neighborhood 
atmosphere, capturing physical, social, cultural, and functional features 
across nearby areas. Learning effective street view representations that 
adapt to these varied needs, particularly in capturing both spatial and 
temporal dynamics of urban environments, remains a key challenge.
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To address the challenge of learning such adaptable representations, 
researchers have increasingly turned to self-supervised learning (SSL). 
Self-supervised learning, leveraging techniques like contrastive learn-
ing (Chen et al., 2020, 2021; He et al., 2020) and masked modeling (He 
et al., 2022; Xie et al., 2022), has demonstrated outstanding perfor-
mance in classical vision tasks such as image classification (Radford 
et al., 2021), object detection (He et al., 2022), and semantic segmen-
tation (Wang, Zhang, et al., 2020), often surpassing traditional super-
vised learning approaches. However, current self-supervised methods 
tend to encode as much semantic and structural information as possi-
ble (Huang et al., 2024; Park et al., 2023), which does not fully align 
with the diverse requirements of urban tasks. For example, they may 
struggle to differentiate between the static features needed for place 
recognition (Lowry et al., 2015) and the dynamic elements critical 
for human perception of places (Dubey et al., 2016; Zhang et al., 
2018), or to capture the spatial consistency required for socioeconomic 
prediction (Wang, Li, & Rajagopal, 2020).
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Fig. 1. The spatiotemporal contrastive learning framework. Our framework organizes four contrastive learning strategies based on their spatiotemporal context. 
The axes define the relationship between the two images in a positive pair. The vertical axis distinguishes between images captured at the same time versus those 
captured across time, while the horizontal axis distinguishes between images from the same location versus those across adjacent but different locations. This 
design allows each strategy to target a different type of invariance, yielding specialized representations with a distinct focus, as detailed in each quadrant.
In image representation learning, selectively encoding dynamic and 
static information in urban environments and the ambiance they create 
is highly important but inherently challenging (Cordts et al., 2016). 
Achieving precise encoding of such information typically requires sep-
arately labeling dynamic and static elements and using specific train-
ing strategies (Cheng et al., 2017; Wang et al., 2019) (e.g., masking 
dynamic elements when encoding static ones). However, both the 
labeling and training processes are fraught with difficulties. Factors 
such as lighting conditions, vegetation appearance, and ground lit-
ter are challenging to label objectively and consistently. This makes 
it nearly impossible to accurately represent these complex environ-
mental factors using traditional datasets (e.g., ImageNet (Deng et al., 
2009), Places (Zhou et al., 2017)) and classical methods (supervised or 
self-supervised).

To address these challenges, we propose a contrastive street-view 
representation learning framework that explicitly leverages timestamp 
and geolocations—types of metadata largely absent from standard im-
age datasets. The core idea is to form complementary positive pairs 
that target different invariances: (i) Temporal Contrast — positive pairs 
formed from the same location captured at different times — drive the 
encoder to emphasize time-invariant, static attributes of the built envi-
ronment (e.g., buildings, infrastructure) and to suppress sensitivity to 
dynamic elements (pedestrians, vehicles), benefiting tasks such as place 
recognition. (ii) Spatial Contrast — positive pairs formed from images 
taken at the same time and adjacent but different locations — en-
courage representations that are stable within an urban neighborhood, 
capturing its socioeconomic ‘‘ambience’’ while reducing sensitivity to 
object-level variations, which supports neighborhood-scale socioeco-
nomic estimation. (iii) Instance Contrast essentially reduces to classical 
instance-level contrastive learning, yielding representations that pre-
serve the full scene (both static and dynamic content, as well as overall 
ambience) for human-perception-oriented tasks. (iv) Spatial–temporal 
Contrast — positive pairs spanning both temporal and spatial varia-
tions promote invariance over both space and time, capturing more 
enduring, higher-level characteristics — such as historical and cultural 
character—that support related urban analytics.
2 
We validate the effectiveness of our primary hypotheses (Instance, 
Spatial, and Temporal contrast) across multiple urban tasks. While 
our framework also conceptualizes a Spatial–temporal contrast for 
learning deep historical and cultural patterns, we leave its experimen-
tal validation for future work, given the difficulty of collecting the 
necessary ground-truth data for its corresponding downstream tasks. 
Experimental results demonstrate that different contrastive learning 
objectives can learn different types of features that are more suitable 
for their respective urban tasks. We also conduct an in-depth analysis 
of the reasons behind the performance of different contrastive methods, 
further underscoring the importance of targeted learning strategies. 
This study systematically explores representation learning strategies 
in urban studies based on street view images, provides a valuable 
benchmark, and enhances the applicability of visual data in urban 
science.

2. Related work

2.1. Street view representation learning for urban tasks

Street view imagery has been widely used in various urban tasks 
(Gebru et al., 2017; Naik et al., 2017), such as road defect detec-
tion (Chacra & Zelek, 2018), traffic prediction (Zhang, Li, & Zhang, 
2024), urban function recognition (Huang et al., 2023), and socioe-
conomic prediction (Fan et al., 2023). However, existing research on 
street view representation often relies on supervised models trained on 
datasets like Places365 (Zhou et al., 2017) or directly uses the pixel 
proportions of semantic segmentation results. These approaches fail to 
fully capture the rich semantic information embedded in street view 
imagery. Unlike natural images, street view imagery not only contains 
complex visual semantics but also encodes valuable spatiotemporal 
information in its metadata. Effectively representing this dual semantic 
nature — both visual and spatiotemporal — remains a significant 
challenge for improving its use in urban tasks. Although a few studies 
have explored spatiotemporal self-supervised learning approaches to 
represent street view imagery (Stalder et al., 2024), these methods 
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Fig. 2. Spatiotemporal contrastive learning with street view images for diverse urban tasks. Temporal relations are constructed by capturing images from the same 
location at different times (e.g., 2018–2024), while spatial relations are established using nearby images taken at the same time. The temporal contrast captures 
temporal-invariant features (e.g., buildings, roads, infrastructure), while the spatial contrast captures spatial-invariant neighborhood atmosphere, reflecting the 
physical, social, and cultural environment. Different representation learning strategies are designed to support various urban tasks, such as visual place recognition, 
safety perception, and socioeconomic prediction.
fail to explore the natural meanings of the spatiotemporal attributes of 
street view imagery and how to leverage these attributes to construct 
self-supervised methods suitable for various urban tasks. For instance, 
Urban2Vec (Wang, Li, & Rajagopal, 2020) incorporates spatial informa-
tion into self-supervised training by constructing positive sample pairs 
based on nearest neighbors, while KnowCL (Liu et al., 2023) integrates 
knowledge graphs with contrastive learning to align locale and visual 
semantics, improving the accuracy of socioeconomic prediction using 
street view imagery.

2.2. Self-supervised representation learning for images

Self-supervised learning (SSL) aims to leverage large amounts of 
unlabeled data to learn effective feature representations by designing 
proxy tasks based on the inherent structure of the data itself. This 
approach reduces reliance on manually annotated datasets, making it 
a powerful paradigm for representation learning. In computer vision, 
contrastive learning stands out as one of the most widely adopted 
SSL methods. These methods train models using discriminative pretext 
tasks, with the core idea of learning robust data representations by dis-
tinguishing between different samples (Caron et al., 2021; Chen & He, 
2021; Wu et al., 2018). Notable examples of contrastive learning algo-
rithms include SimCLR, MoCo, and BYOL (Chen et al., 2020, 2021; Grill 
et al., 2020; He et al., 2020). While these approaches have achieved 
significant success, they predominantly focus on natural images lacking 
spatiotemporal context, often targeting classic computer vision tasks 
such as semantic segmentation and object detection. These tasks re-
quire encoding as much information as possible from static images. 
However, urban tasks involving street view imagery present distinct 
challenges, where spatial and temporal dependencies play a critical 
role in capturing the dynamics of urban environments. To address these 
challenges, spatiotemporal self-supervised learning extends traditional 
SSL methods by incorporating temporal coherence (Manas et al., 2021; 
van den Oord et al., 2019) and geographic context (Ayush et al., 2021; 
Deuser et al., 2023; Guo et al., 2024; Klemmer et al., 2024; Mai et al., 
2023). These adaptations have proven effective in domains like remote 
sensing and multi-view learning, yet their application to street view 
imagery remains underexplored. A more integrated spatiotemporal self-
supervised framework is essential to better model the dynamic nature 
of urban landscapes and enhance the performance of urban-related 
applications.
3 
3. Learning street view representations with spatiotemporal con-
trast

Our approach to learning urban representations is guided by the 
spatiotemporal contrastive learning framework (Fig.  1), a unified frame-
work designed to leverage the unique attributes of street view imagery. 
This framework organizes representation learning along two fundamen-
tal axes that define how positive pairs are constructed: the spatial axis, 
which considers whether pairs are from the same place or different 
locations within a neighborhood, and the time axis, which consid-
ers whether they are from the same time. This creates four distinct 
quadrants of contrastive learning, each designed to isolate a specific 
type of urban feature: Instance Contrast, Temporal Contrast, Spatial 
Contrast, and the conceptual Spatial–temporal Contrast. It is important 
to note that GSV-self, GSV-spatial, and GSV-temporal represent distinct 
contrastive learning objectives used to train the model. This section 
details the specific implementation of these learning strategies (Fig.  2).

3.1. Instance contrast learning

Instance Contrast Learning serves as the foundational strategy in our 
framework, designed to extract robust features from individual street 
view images. This approach is built on the core principle of contrastive 
learning: learning representations by minimizing the distance between 
positive samples and maximizing the distance from negative samples 
in a feature space. Crucially, in Instance Contrast, a positive pair is 
generated by applying two different random augmentations (e.g., crop-
ping, color jitter) to the same source image, creating two distinct but 
semantically identical views. All other images in a batch are treated as 
negative samples.

By optimizing the InfoNCE loss function, the model learns to re-
duce the distance between positive pairs in the feature space and 
increase the distance from negative samples, thus improving the feature 
representation learning.

To learn augmentation invariance, we define the instance con-
trastive loss. Given a positive pair of augmented views (𝑥𝑖, 𝑥𝑗 ) derived 
from the same source image, the instance contrastive loss is: 

i = − log
exp

(

𝑥𝑖 ⋅ 𝑥𝑗∕𝜏
)

( )
∑ − ( − ) (1)
exp 𝑥𝑖 ⋅ 𝑥𝑗∕𝜏 + 𝑥𝑘 exp 𝑥𝑖 ⋅ 𝑥𝑘 ∕𝜏
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where 𝑥𝑖 and 𝑥𝑗 are the feature representations of the positive aug-
mented views, and 𝑥−𝑘  represents the negative samples. This loss en-
courages the model to maximize the similarity between different views 
of the same image while minimizing their similarity to all other images. 
Building on this contrastive learning framework, we introduce temporal 
and spatial contrasts for constructing positive pairs from street view 
images.

To enable the use of a large and consistent dictionary of negative 
samples without the need for massive batch sizes, we adopt a momen-
tum encoder framework (He et al., 2020). In this approach, the key 
representations (𝑘+ and 𝑘−) are generated by a separate momentum 
encoder. Crucially, this encoder is not updated through backpropaga-
tion, which prevents the dictionary keys from becoming inconsistent 
as the model trains. Instead, its parameters (𝜃𝑘) are a slowly evolving 
exponential moving average of the query encoder’s parameters (𝜃𝑞):
𝜃𝑘 ← 𝑚𝜃𝑘 + (1 − 𝑚)𝜃𝑞

With a high momentum coefficient 𝑚 (e.g., 0.999), this method 
ensures that the keys in our dynamic dictionary remain consistent, 
providing a stable target that is essential for effective contrastive 
learning. The following sections introduce our novel temporal and spa-
tial contrastive strategies. They are built upon this same foundational 
architecture — using InfoNCE loss and a momentum encoder — but 
critically redefine the method for constructing positive pairs to capture 
specific spatiotemporal features.

3.2. Temporal contrastive learning

Street view images captured at the same location but at different 
times differ from video frames because the intervals between shots 
are not fixed. Unlike remote sensing images, street view images taken 
at different times are not perfectly aligned in terms of geographic 
locations. Due to the typical spatial and angular shifts between images 
captured at different times, we define positive temporal pairs based on 
their close proximity — such as being taken just a short distance apart 
— and having the same shooting angle, ensuring sufficient consistency 
without demanding exact alignment. The historical street view image 
set for each location can be represented as 𝑇 = [𝑡1, 𝑡2,… , 𝑡𝑛], where 𝑡𝑖
denotes the images captured at different times. Since the number of 
images varies for each location, resulting in different values of 𝑛, we 
randomly selected two images from different time periods within each 
set to serve as a positive pair. The aim of temporal contrast is to capture 
the invariant features of the same location over time. This means that 
even though the images are taken at different times, the model should 
learn to recognize the consistent characteristics of the scene.

To capture invariant features of the same location over time, we 
define the temporal contrastive loss. Given a positive sample pair (𝑡𝑖, 𝑡𝑗 )
that meets temporal conditions ((images taken in close proximity and 
from the same angle)), the temporal contrastive loss is: 

t = − log
exp

(

𝑡𝑖 ⋅ 𝑡𝑗∕𝜏
)

exp
(

𝑡𝑖 ⋅ 𝑡𝑗∕𝜏
)

+
∑

𝑡−𝑘
exp

(

𝑡𝑖 ⋅ 𝑡−𝑘 ∕𝜏
) (2)

where 𝑡𝑖 and 𝑡𝑗 are feature representations of the positive temporal 
samples, 𝑡−𝑘  denotes negative samples from different locations or angles, 
and 𝜏 is the temperature parameter for scaling. This formulation aims 
to maximize similarity between the same location’s images taken at 
different times while minimizing similarity to negatives.

3.3. Spatial contrastive learning

Capturing the spatial consistency of an urban area is essential 
for accurately representing the urban physical environment. Spatial 
consistency refers to the ability to recognize that different locations 
within the same urban area still represent the same underlying physical 
characteristics. To achieve this, we treat all street view images captured 
within a specific urban area as sharing a common set of environmental 
4 
characteristics, even if these images are taken from different angles or 
slightly different positions. This approach allows the model to account 
for variations in location while preserving the overall ambiance of 
the area. The set of street view images for a given urban area can 
be denoted as 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑛}, where each 𝑠𝑖 represents an image 
captured within the defined area. These images collectively provide 
a comprehensive spatial representation of the urban environment. We 
randomly select two samples (𝑠𝑖, 𝑠𝑗 ) from the set 𝑆 and treat them as 
positive pairs. This encourages the model to learn that despite slight 
variations in shooting angle or position, the images are part of the same 
spatial context.

To capture spatial consistency within an urban area, we define 
the spatial contrastive loss. Given a set of street view images 𝑆 =
{𝑠1, 𝑠2,… , 𝑠𝑛} from the same urban area, we randomly select two 
samples (𝑠𝑖, 𝑠𝑗 ) as a positive pair and define the spatial contrastive loss 
as: 

s = − log
exp

(

𝑠𝑖 ⋅ 𝑠𝑗∕𝜏
)

exp
(

𝑠𝑖 ⋅ 𝑠𝑗∕𝜏
)

+
∑

𝑠−𝑘
exp

(

𝑠𝑖 ⋅ 𝑠−𝑘 ∕𝜏
) (3)

where 𝑠𝑖 and 𝑠𝑗 are feature representations of the positive spatial 
samples, and 𝑠−𝑘  represents negative samples from different urban areas. 
This loss encourages the model to maximize similarity between images 
in the same urban area while minimizing similarity to negatives from 
other areas. By doing so, we enable the model to learn consistent and 
representative spatial features across the entire urban area.

3.4. Spatial–temporal contrastive learning

The fourth quadrant of our framework, Spatial–temporal Contrast, 
involves constructing positive pairs from images of different nearby 
locations taken at different times. The objective is to learn spatial–
temporal invariance, forcing the model to discover the long-term core 
identity of a neighborhood. By filtering out both short-term temporal 
dynamics and hyperlocal spatial details, this representation would the-
oretically capture the enduring architectural character and functional 
essence of a region.

Formally, given a positive spatial–temporal pair (𝑠𝑡𝑖, 𝑠𝑡𝑗 ), the loss 
function would be defined as: 

st = − log
exp

(

𝑠𝑡𝑖 ⋅ 𝑠𝑡𝑗∕𝜏
)

exp
(

𝑠𝑡𝑖 ⋅ 𝑠𝑡𝑗∕𝜏
)

+
∑

𝑠𝑡−𝑘
exp

(

𝑠𝑡𝑖 ⋅ 𝑠𝑡−𝑘 ∕𝜏
) (4)

where 𝑠𝑡𝑖 and 𝑠𝑡𝑗 are the feature representations of the positive pair, and 
𝑠𝑡−𝑘  denotes negative samples from unrelated regions or time periods.

While conceptually powerful, we did not experimentally implement 
spatial–temporal contrast in this work. The primary challenge lies in 
identifying suitable downstream tasks and corresponding benchmark 
datasets for validation. Tasks that would benefit from such a represen-
tation, like analyzing the long-term evolution of urban fabric, require 
large-scale, longitudinal data that is often not readily available for stan-
dardized evaluation. Therefore, we posit this strategy as a promising 
and significant direction for future research, which will build upon the 
foundational work presented here.

4. Applying task-centric representations to urban applications

Urban environments exhibit both spatial and temporal complexities
—locations change over time yet retain inherent characteristics, and 
different areas share structural similarities while maintaining distinct 
identities. Capturing these dynamics is essential for understanding 
cities, making tasks such as visual place recognition, socioeconomic 
prediction, and safety perception natural benchmarks for evaluating 
our contrastive learning framework. We assess their effectiveness across 
these urban tasks by pre-training models using self-supervised learning 
on temporal and spatial contrastive datasets. We also analyze how 
different contrastive strategies influence learned urban representations.
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4.1. Urban tasks description

Understanding urban environments involves recognizing locations 
under varying conditions, inferring socioeconomic patterns from visual 
cues, and assessing perceived safety. Each of these tasks inherently 
involves distinct spatial and temporal challenges that align with our 
contrastive learning objectives. These three urban tasks — visual place 
recognition, socioeconomic prediction, and safety perception — collec-
tively test a model’s ability to disentangle invariant and dynamic urban 
features, as detailed below.

Visual place recognition. Locations undergo seasonal changes, 
construction, and variations in lighting, yet key structural elements 
remain invariant. The challenge in visual place recognition is to dis-
tinguish locations while being robust to these transient variations. A 
model that captures invariant features while ignoring irrelevant fluctu-
ations improves visual place recognition performance. We evaluate vi-
sual place recognition performance using multiple datasets that capture 
diverse environmental variations. The CrossSeason dataset (Mans Lars-
son et al., 2019) focuses on seasonal changes, testing model robustness 
to variations in snow, foliage, and lighting throughout the year. The 
ESSEX dataset (Zaffar et al., 2021) introduces viewpoint and light-
ing diversity in urban and suburban settings, challenging the model’s 
ability to recognize places under different perspectives. The Pittsburgh 
dataset (Arandjelović et al., 2018) extends this by incorporating large-
scale street view imagery from Pittsburgh, supporting localization and 
geographic recognition. The SPED dataset (Chen et al., 2018) em-
phasizes temporal changes, containing images captured at different 
times to study scene dynamics and urban transformation. Lastly, the 
MapillarySLS dataset (Warburg et al., 2020) provides a globally dis-
tributed dataset with diverse street view images, aiding in tasks such as 
autonomous driving and broad-scale visual recognition. Together, these 
datasets comprehensively evaluate the model’s ability to handle spatial, 
temporal, and environmental variations in visual place recognition.

Socioeconomic prediction. The urban environment reflects socioe-
conomic characteristics through its visual features, from infrastructure 
quality to commercial density. Inferring socioeconomic indicators re-
quires recognizing patterns that extend beyond individual images to the 
broader urban context. A model that associates images from the same 
area while distinguishing them from those in different socioeconomic 
conditions provides stronger predictive capability. In our urban task, 
we used socioeconomic indicators provided by Fan et al. (2023), which 
include data from seven major metropolitan areas in the United States. 
The socioeconomic indicators cover various topics relevant to urban 
studies and are detailed in Table  1.

Safety perception. Perceived safety is influenced by multiple vi-
sual factors, including lighting, greenery, building conditions, and the 
openness of spaces, which vary across both space and time. A robust 
safety perception model could capture safety-related features while 
adapting to temporal changes caused by urban development or daily 
cycles. To evaluate our approach, we use PlacePulse 2.0 (Dubey et al., 
2016), a large-scale dataset containing crowdsourced safety perception 
ratings for urban scenes. This dataset provides a diverse range of 
environments, enabling models to learn and generalize safety-related 
visual cues across different geographic and temporal contexts.

These urban tasks naturally reflect the challenges of disentangling 
invariant characteristics from dynamic variations, a fundamental ob-
jective in learning urban representations. Evaluating our contrastive 
learning models on these benchmarks allows us to assess their ability 
to capture meaningful urban features that generalize across different 
environments.

4.2. Street view data and pre-training datasets

We collect street view imagery to develop pre-training datasets 
for self-supervised learning models targeting urban tasks. Then, we 
apply our spatiotemporal contrastive framework to pre-train models, 
effectively capturing urban characteristics.
5 
4.2.1. Data collection and preprocessing
To obtain street view imagery for both self-supervised model train-

ing and socioeconomic prediction, we first sourced road network data 
for each city using the OSMnx library (Boeing, 2017) from Open-
StreetMap. We then generated query points along these road networks 
at regular intervals of 15 m. The Google Street View (GSV) Application 
Programming Interface (API) was subsequently utilized to retrieve and 
download street view images.

Since the visual place recognition and safety perception datasets 
include a wide range of street view images from different cities, while 
the socioeconomic prediction task focuses more on local city charac-
teristics, we constructed two separate datasets — a global version and 
a local version — for testing on different urban tasks. For the global 
version, to capture a broad spectrum of urban environments, we trained 
our self-supervised models on data collected from ten diverse and 
representative global cities including Amsterdam, Barcelona, Boston 
Metropolitan Area (Boston), Buenos Aires, Dubai–Sharjah (Dubai), Jo-
hannesburg, Los Angeles, Melbourne, Seoul, and Singapore. These cities 
were carefully selected to encompass a variety of geographical loca-
tions, cultural backgrounds, and urban forms, ensuring the diversity 
and richness of our training dataset. We collected historical images of 
ten global cities from the GSV API, which resulted in a total of over 42 
million street view images used for pre-training. For the local version, 
we selected street view images from Los Angeles to construct different 
contrastive datasets tailored to the specific needs of the socioeconomic 
prediction task in that city. The construction methods of datasets are 
similar to the global version.

4.2.2. Pre-training datasets construction
Based on the street view pre-training datasets, we constructed 

three distinct contrastive datasets corresponding to different contrastive 
learning models for both global and local versions: instance contrast, 
temporal contrastive, and spatial contrastive datasets. To benchmark 
against the MoCov3 baseline trained on ImageNet, each dataset was 
standardized to consist of 1 million image pairs. This uniform dataset 
size facilitates a fair comparison among the models by ensuring that 
each receives an equal amount of training data.

Instance contrast dataset. For the instance contrast dataset, we 
randomly selected 100,000 images from each of the 10 cities, resulting 
in a total of 1 million images. Positive pairs were generated during 
training by applying data augmentation techniques to these images, fol-
lowing the settings used in MoCo v3 (Chen et al., 2021). Additionally, 
for the local version, we constructed an instance contrast dataset based 
solely on Los Angeles using the same method.

Temporal contrastive dataset. In constructing the temporal con-
trastive dataset, we randomly selected 100,000 street view sampling 
points from each of the 10 cities, totaling 1 million sampling points. 
At each sampling point, we retrieved images taken at different times 
but in close proximity, specifically within 5 m, and from the same 
shooting angle. This constraint ensures that the images remain spatially 
and visually consistent despite temporal differences, minimizing the 
impact of significant positional or perspective shifts on the temporal 
contrastive learning process. Two images were randomly selected from 
the temporal sequence to form a positive pair, resulting in 1 million 
temporal positive pairs. Similarly to the instance contrast dataset, we 
constructed an additional temporal contrastive dataset based solely on 
Los Angeles using the same method.

Spatial contrastive dataset. For the global spatial contrastive 
dataset, we defined a 100-meter buffer zone as the spatial unit for 
contrastive analysis. This 100-meter radius was selected to provide a 
standardized spatial scale across different countries, as national census 
units vary significantly in size and definition, necessitating a uniform 
buffer for consistent global comparisons. From each buffer zone, we 
randomly selected two images to form positive pairs, and out of all the 
spatial positive pairs generated, we then randomly selected 1 million 
pairs to create the spatial contrastive dataset. Notably, we did not 
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Table 1
Socioeconomic Indicators for Urban Prediction: Crime, Health, Poverty, and Transport Metrics by Spatial Unit.
 Topic Indicator Label

 Crime Violent crime occurrence per spatial unit Log(Violent Crime)  
 Violent theft-related crime occurrence per spatial unit Log(Petty Crime)  
 Health Model-based estimate for crude prevalence of % Cancer Health  
 cancer (excluding skin cancer) among adults aged ≥ 18 years  
 Model-based estimate for crude prevalence of % Diabetes  
 diagnosed diabetes among adults aged ≥ 18 years  
 Model-based estimate for crude prevalence of % LPA  
 no leisure-time physical activity among adults aged ≥ 18 years  
 Model-based estimate for crude prevalence of % Mental Health  
 mental health not good for ≥ 14 days among adults aged ≥ 18 years  
 Model-based estimate for crude prevalence of % Obesity  
 obesity among adults aged ≥ 18 years  
 Model-based estimate for crude prevalence of % Physical Health  
 physical health not good for ≥ 14 days among adults aged ≥ 18 years  
 Poverty Median Household Income Log(Income)  
 % Individuals with poverty status determined: % Poverty Line (100%) 
 below 100% poverty line  
 % Individuals with poverty status determined: % Poverty Line (200%) 
 below 200% poverty line  
 Transport % Population (>16) commute by driving alone % Drive Alone  
 Estimated personal miles traveled on a working weekday PMT  
 Estimated personal trips traveled on a working weekday PTRP  
 Estimated vehicle miles traveled on a working weekday VMT  
 Estimated vehicle trips traveled on a working weekday VTRP  
 % Population (>16) commute by public transit %Public Transit  
 % Population (>16) commute by walking and biking %Walk  
impose restrictions on the shooting angle for these positive pairs, allow-
ing the model to focus on the broader urban environment rather than 
specific street layouts. In contrast, for the local version, we adopted 
U.S. census block groups (CBGs) as the spatial units for contrastive 
analysis, leveraging their standardized definition across the United 
States. Positive pairs were constructed based on the boundaries of these 
CBGs, aligning the spatial scale with the U.S.-specific socioeconomic 
dataset.

4.2.3. Pre-training details
We use AdamW (Loshchilov & Hutter, 2019) as the optimizer, a 

common choice for training ViT base (Dosovitskiy et al., 2021) models, 
with a weight decay of 1e−6. For each dataset, we use a mini-batch 
size of 1024 and an initial learning rate of 6e−6. The model is trained 
for 300 epochs, starting with a 40 epoch warmup (Goyal et al., 2018), 
followed by a cosine decay schedule for learning rate decay (Loshchilov 
& Hutter, 2017). Training the ViT Base model for 300 epochs on 4 
Nvidia A800 GPUs takes approximately 71 h.

5. Results

We evaluate our models on three tasks — visual place recogni-
tion, socioeconomic prediction, and safety perception — each aligning 
with different contrastive learning strategies. Visual place recognition 
benefits from temporal contrastive learning to enhance stability across 
time. Socioeconomic prediction relies on spatial contrastive learning 
to capture neighborhood patterns. Safety perception leverages instance 
contrast learning to extract global scene features. These contrastive 
objectives enable our model to learn robust and transferable urban 
representations.

To demonstrate the effectiveness of our proposed methods, we 
benchmark their performance against several comparators. Our base-
lines include Urban2Vec (Wang, Li, & Rajagopal, 2020), a prominent 
urban representation method that we retrained on our Spatial con-
trastive dataset for a fair comparison, where we exclusively employed 
the visual component and excluded the POI module to ensure a direct 
evaluation of street view representations; Urban2Vec-ViT, a variant 
where we replaced the original Inception-V3 backbone with ViT-Base 
to ensure architectural consistency with our proposed models; and 
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ImageNet-self, a model pre-trained on ImageNet with the MoCo-v3 
self-supervised method to test the transferability of general visual 
features (Chen et al., 2021). In addition, we establish a direct base-
line, GSV-self, using instance-level contrastive learning on our Google 
Street View dataset. We evaluate these models against our proposed 
GSV-spatial and GSV-temporal approaches, which explicitly learn from 
spatial and temporal relationships, respectively. This comprehensive 
comparison is designed to highlight the unique advantages of incor-
porating spatiotemporal context into representation learning for urban 
environments.

5.1. Visual place recognition

Visual place recognition is a crucial urban task that aims to identify 
specific locations based on visual input. This task requires the removal 
of temporal disturbances to focus on invariant information that does 
not change over time, demanding feature extraction that effectively 
distinguishes constant characteristics in the environment to improve 
recognition accuracy.

To evaluate the model’s performance in visual place recognition 
tasks, we used several benchmark datasets: CrossSeason (Mans Larsson 
et al., 2019), Essex (Zaffar et al., 2021), Pitts250k, Pitts30k (Arand-
jelović et al., 2018), SPED (Chen et al., 2018), and MapillarySLS (War-
burg et al., 2020) datasets. Detailed information about these benchmark 
datasets is described in Section 4.1. We formulate VPR as a large-
scale image retrieval task. For each dataset, the test images serve as 
‘‘queries’’, which are used to search against a large, geotagged database 
of images. The objective is to retrieve the database images that are 
geographically closest to the true location of the query image.

The models were tested by freezing the backbone of the pre-trained 
ViT and extracting the [CLS] token for visual place recognition tasks. 
We assessed performance using the Recall@K metric, measuring the 
models’ ability to correctly identify query image locations among the 
top-k most similar database images.

The critical test for temporal and environmental invariance lies 
in how these query and database sets are constructed: images of the 
same location are deliberately captured under different conditions. For 
instance, in the CrossSeason dataset, the database may consist of images 
collected in summer, while the corresponding queries are the same 
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Fig. 3. Performance comparison on different visual place recognition datasets (Recall@K in %).
locations captured in winter. A high Recall@K score in this scenario 
indicates that the model has successfully learned a representation that 
is robust to drastic seasonal changes (e.g., snow, foliage, lighting) 
and focuses on the underlying, invariant structural features of the 
place. This same principle of mismatched conditions is applied in other 
datasets to test for different invariances, such as long-term changes in 
SPED and viewpoint shifts in ESSEX.

In Fig.  3, the GSV-temporal model demonstrates exceptional perfor-
mance on the CrossSeason dataset, achieving a recall value of 100% 
across all K values. This indicates its robust capability in cross-season 
visual place recognition tasks. In contrast, GSV-self and ImageNet-self 
exhibit significantly lower performance, suggesting their inability to 
effectively capture temporal invariant features. On the Essex dataset, 
GSV-temporal maintains a recall value exceeding 75%, with values of 
99.05% for both K = 20 and K = 25. This highlights its insensitivity 
to dynamic changes in the environment, which allows it to outperform 
other models in this context. In the Pitts250k dataset, GSV-temporal 
consistently outperforms GSV-self and ImageNet-self in recall values, 
the GSV-temporal model also excels on the Pitts30k dataset, achieving 
a recall value of 90.23% at K = 15. underscoring its suitability for 
complex urban environments in visual place recognition tasks. For the 
SPED dataset, GSV-temporal displays superior recall values compared 
to other models, particularly with a notable performance at K = 5. 
In the MapillarySLS dataset, GSV-temporal showcases its outstanding 
performance again, with a recall value of 77.57% at K = 15.

In summary, the GSV-temporal model consistently outperforms 
other models across multiple datasets, particularly in visual place 
recognition tasks. Its insensitivity to temporal and environmental
changes positions it as a superior choice for this application, revealing 
significant potential for practical use.

5.2. Socioeconomic prediction

The socioeconomic prediction task uses street view images to infer 
the socioeconomic status of urban areas. It emphasizes learning the 
overall ambiance of a region rather than specific geometric features, 
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highlighting the need for feature extraction to focus on similarities 
between regions to understand economic conditions and developmental 
dynamics better.

In the urban task of predicting socioeconomic indicators, we uti-
lized the socioeconomic dataset published by Fan et al. (2023), which 
contains 18 socioeconomic indicators across seven major cities in the 
United States (Table  1). We take the socioeconomic prediction of Los 
Angeles as an example. Detailed descriptions are provided in Sec-
tion 4.1. We first extracted street view features from the images using 
the pre-trained models of the local version. These features were then 
aggregated using the mean values at the block group level. The ag-
gregated features were used as input features to predict socioeconomic 
indicators for each block group.

For prediction model training and evaluation, we split each city’s 
dataset into a training set (70%) and a testing set (30%). We used 
LASSO (Tibshirani, 1996) as the regressor to evaluate the predictive 
performance of the image features extracted by the different pre-trained 
models. Additionally, we applied 5-fold cross-validation to ensure ro-
bust evaluation. This approach allows for a fair comparison of the 
different contrastive learning models in capturing visual features that 
are meaningfully correlated with socioeconomic indicators.

The results of socioeconomic predictions are shown in Table  2. 
Overall, models pre-trained on street view images significantly out-
perform the model pre-trained on the ImageNet dataset. Specifically, 
across all 18 indicators, the model pre-trained on the general ImageNet 
dataset achieved an average 𝑅2 of 0.5209. while the prominent street-
view-based method Urban2Vec scored 0.3464. In contrast, models on 
street view images achieved average 𝑅2 scores of 0.5609 for instance 
contrast, 0.5714 for temporal contrastive, and 0.5888 for spatial con-
trastive models, respectively. Furthermore, both temporal and spatial 
contrastive pre-training models capture more socioeconomic-related 
information compared to the instance contrast approach, with spatial 
contrastive demonstrating the highest performance. This trend is con-
sistent across most socioeconomic indicators, showing the strongest 
predictive performance for Health-related indicators and the least for 
Crime-related indicators.
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Table 2
Model performance comparison on socioeconomic prediction tasks based on LASSO across contrastive models.
 Topic Label Urban2Vec Urban2Vec-ViT GSV-self GSV-spatial GSV-temporal ImageNet-self 
 Crime Log(Violent Crime) 0.2369 0.3139 0.4203 0.4287 0.4194 0.4146  
 Log(Petty Crime) 0.0634 0.1179 0.1810 0.1877 0.1892 0.1667  
 Total 0.1501 0.2159 0.3007 0.3082 0.3043 0.2906  
 Health % Cancer Health 0.3275 0.4216 0.6644 0.6969 0.6618 0.6053  
 % Diabetes 0.3158 0.422 0.6589 0.6942 0.6796 0.6172  
 % LPA 0.4458 0.5708 0.8001 0.8337 0.8221 0.7671  
 % Mental Health 0.4206 0.4749 0.7088 0.7510 0.7291 0.6753  
 % Obesity 0.3861 0.4432 0.7628 0.7886 0.7797 0.7175  
 % Physical Health 0.3980 0.4497 0.7120 0.7399 0.7314 0.6752  
 Total 0.3823 0.4637 0.7178 0.7507 0.7340 0.6763  
 Poverty Log(Income) 0.3278 0.4438 0.6561 0.6816 0.6735 0.6096  
 % Poverty Line (100%) 0.1246 0.1567 0.1948 0.2227 0.1833 0.1718  
 % Poverty Line (200%) 0.3469 0.4454 0.6154 0.6377 0.6401 0.5893  
 Total 0.2663 0.3486 0.4888 0.5140 0.4990 0.4569  
 Transport % Drive Alone 0.1765 0.2591 0.3841 0.3991 0.3835 0.3582  
 PMT 0.2974 0.4349 0.6196 0.6447 0.6289 0.5379  
 PTRP 0.3269 0.4168 0.6024 0.6385 0.6087 0.5302  
 VMT 0.4072 0.4645 0.6647 0.6921 0.6874 0.6163  
 VTRP 0.3741 0.4888 0.6900 0.6994 0.6991 0.6436  
 %Public Transit 0.1162 0.4237 0.5226 0.5700 0.5339 0.4726  
 %Walk 0.2636 0.2551 0.2383 0.2925 0.2340 0.2080  
 Total 0.2803 0.3918 0.5317 0.5623 0.5394 0.4810  
 Overall Total 0.3464 0.3890 0.5609 0.5888 0.5714 0.5209  
Table 3
Evaluation metrics of different models on the safety perception classification 
task.
 Model Accuracy (%) Recall (%) F1 Score (%) AUC Score (%)
 Urban2Vec 79.25 64.52 69.44 76.12  
 Urban2Vec-ViT 80.94 67.58 70.54 78.11  
 ImageNet-self 83.25 70.32 75.43 80.51  
 GSV-temporal 84.91 65.16 75.94 80.72  
 GSV-spatial 86.08 68.39 78.23 82.33  
 GSV-self 88.68 77.42 83.33 86.29  

These findings suggest that spatial contrastive pre-training effec-
tively captures the overall ambiance of urban areas, enabling more 
precise predictions of regional socioeconomic information. Addition-
ally, temporal contrastive pre-training filters out random factors and 
dynamic elements in the images, enhancing the reliability of socioeco-
nomic predictions.

5.3. Safety perception

The safety perception task involves using street view imagery to 
estimate how safe people perceive a given scene to be. To make 
accurate estimates, this task requires analyzing all relevant elements 
within the scene, as each can contribute to the overall perception of 
safety, particularly elements such as trees and vehicles (Zhang et al., 
2018).

We selected the PlacePlus 2.0 (Dubey et al., 2016) dataset for the 
urban task of human environmental perception, filtering out over 1144 
images with safety perception scores below 3.5 and above 6.5, with 
80% of the data used for training and 20% for testing. The model was 
trained using a linear binary classification approach for 20 epochs to 
effectively distinguish between low and high safety perception environ-
ments.

Table  3 compares the performance of various models in classifying 
safety perception in urban environments. As a baseline, the Urban2Vec 
model achieved an accuracy of 79.25% and an F1 score of 69.44%. In 
an improvement over this and all other methods, the GSV-self model 
achieved the highest performance, with a top accuracy of 88.68% and 
recall of 77.42%. This demonstrates its effectiveness in identifying both 
safe and unsafe environments while minimizing false negatives. Its F1 
score of 83.33% indicates a balance between precision and recall, and 
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the AUC score of 86.29% further confirms its ability to distinguish 
between safety levels across thresholds. Overall, the GSV-self model 
outperforms the others in all metrics, underscoring the strength of 
instance-level contrastive learning for urban safety perception tasks.

6. Discussion

We conduct interpretability analyses on the features learned by 
the different contrastive models to gain a deeper understanding of the 
information the models focus on and how this impacts performance on 
urban tasks.

6.1. Analysis of differences in spatiotemporal contrastive features

This section explores the differences in feature representation and 
retrieval tasks by comparing the Instance, Spatial, and Temporal con-
trastive methods. We use street view images from Chicago, analyzing 
the performance of these three contrastive methods in pre-trained 
models. For each model pre-trained with a unique contrastive learning 
objective, we extract a 768-dimensional feature vector representing 
the characteristics of street view images. In our experiment, to com-
prehensively evaluate the retrieval performance of these methods, we 
randomly selected 500 street view images from different locations in 
Chicago as query images, ensuring that each image originated from a 
distinct spatial location. For each query image, we used the Nearest 
Neighbors method in feature space to retrieve the top five street view 
images with the closest Cosine distance. This process generated a total 
of 500 sets of query and retrieval pairs, with five results for each query. 
Specifically, we used the Euclidean distance as a similarity measure to 
rank and obtain the top five retrieval results.

Finally, we randomly selected one set of queries and retrieval results 
for visualization. By comparing the year, heading, and feature distance 
of the retrieved results with the query image, we visually demonstrated 
the significant differences in retrieval characteristics among the three 
contrastive methods. Fig.  4 shows the retrieval results for a given 
query street view image using GSV-self, GSV-spatial, and GSV-temporal 
contrastive methods. On the left, the query image is displayed, in-
cluding information about the year of capture (June 2018), heading 
(90◦), geographic location (42.3951, 71.1217), and city (Chicago). The 
retrieval results are arranged in three rows, corresponding to the GSV-
self, GSV-spatial, and GSV-temporal methods (Fig.  2). Each row shows 
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Fig. 4. Comparison of retrieval results using GSV-self, GSV-spatial, and GSV-temporal methods for a given query image (Year: 2018, Heading: 90◦, Location: 
Chicago). Each row corresponds to the top-5 retrieved street view images based on different self-supervised pertained models, ranked by image feature similarity 
to the query image. The GSV-temporal results are all within a 10-meter radius and have identical heading angles, but correspond to different time periods, 
demonstrating temporal invariance of the learned image representations. The GSV-spatial results cover a larger geographic area with nearby timeframes, 
maintaining a consistent overall ambiance.
the top five most similar retrieval results, ranked from left to right (1st 
to 5th). Below each retrieved image, the year of capture, heading, and 
actual distance from the query image (in meters) are indicated. The 
GSV-self method retrieves the nearest street view images based on deep 
feature similarity. From the comparison, it can be seen that although 
the retrieved images are from different locations, they are very similar 
to the query image in feature space, indicating that GSV-self emphasizes 
overall visual feature similarity without considering consistency in 
geographic location, heading, or time. The GSV-spatial retrieval results 
cover a larger geographic area, allowing for greater spatial variation 
while aiming to maintain a similar overall ambiance and temporal prox-
imity. It can be observed that most of the retrieved street view images 
are relatively dispersed in space, but the overall ambiance and time 
are relatively close, reflecting spatial and environmental consistency. 
This allows GSV-spatial to capture visually similar urban characteristics 
across different locations. The GSV-temporal retrieval results maintain 
the same heading and are strictly limited to within a 10-meter radius, 
highlighting temporal diversity. While the position and heading are 
mostly unchanged, the retrieved images come from different years. This 
approach demonstrates sensitivity to temporal changes while keeping 
other factors consistent, thereby showcasing the variation of the same 
location across different years.

6.2. What do GSV-temporal and GSV-spatial contrastive objectives learn 
from GSV?

Our experimental results reveal that different contrastive learning 
methods excel in different tasks: Temporal contrastive performs excep-
tionally well in visual place recognition tasks, Spatial contrastive shows 
better results in macroeconomic prediction tasks, and Self contrastive 
achieves the best performance in safety perception tasks, confirming 
our hypothesis that street view images captured at the same location 
over time enable contrastive learning tasks to uncover the temporal-
invariant characteristics of the urban environment. Similarly, spatially 
proximate street view images from the same period facilitate learning 
tasks to capture the spatial-invariant neighborhood ambiance, such 
as the socioeconomic overall ambiance. To further understand how 
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different models allocate their attention to various aspects of the input, 
we visualized the attention maps in ViT and evaluated the spatial extent 
of attention using attention distance. This analysis reveals the distinct 
focus areas of each model, shedding light on their feature extraction 
preferences.

6.2.1. GSV-temporal learns temporal invariant characteristics, and GSV-
spatial learns invariant neighborhood ambiance

To provide a more intuitive and interpretable visualization of what 
our models learn, we employ Grad-CAM (Selvaraju et al., 2017) to 
generate attention heatmaps (Fig.  5). This method highlights the image 
regions most influential to the model’s final representation. We selected 
two street view images from the same location but captured five years 
apart (2012 vs. 2017), allowing us to observe how each contrastive 
learning strategy handles temporal changes.

As shown in Fig.  5(a) and (d), the GSV-self model, trained with 
instance-level contrast, tends to focus on the most visually salient 
objects in each image independently. For instance, in the 2012 image, 
its attention is drawn to the dark SUV and prominent building facades. 
In the 2017 image, its focus shifts to the white van and different 
storefronts. This indicates that GSV-self learns strong general features 
but does not inherently distinguish between permanent and transient 
elements of the scene.

The GSV-temporal model demonstrates a clear ability to learn time-
invariant characteristics. In both Fig.  5(b) and (e), the model focuses on 
permanent structures such as the building architecture on the left and 
right, the overall street layout, and the horizon. Crucially, it learns to 
ignore transient objects like cars and pedestrians, which are present in 
different positions and forms across the years. The attention on vehicles 
is significantly suppressed compared to GSV-self. This visualization 
provides evidence that temporal contrast effectively filters out dynamic 
elements to capture the stable, enduring characteristics of a location.

The GSV-spatial model exhibits a distinctly different pattern. As 
seen in Fig.  5(c) and (f), its attention is much more holistic and 
diffuse, spreading across the entire scene. Rather than focusing on 
specific objects, it captures the overall ’’atmosphere’’—encompassing 
the buildings, street, sky, and foliage collectively. The attention pat-
terns between 2012 and 2017 are remarkably similar in their broad 



Y. Li et al. Computers, Environment and Urban Systems 125 (2026) 102393 
Fig. 5.  Grad-CAM visualization of model attention under different contrastive learning strategies. The heatmaps show the focus of three models on street view 
images of the same location captured at different times (top: 2012, bottom: 2017). (a, d) GSV-self (instance contrast) focuses on salient objects within individual 
images. (b, e) GSV-temporal (temporal contrast) learns to focus on time-invariant structures, such as building facades, while ignoring dynamic objects like vehicles. 
(c, f) GSV-spatial (spatial contrast) exhibits a broader, holistic attention, capturing the overall scene ambiance.
scope, suggesting the model learns the invariant spatial context and 
layout of the neighborhood. This supports our hypothesis that spatial 
contrast encourages the model to learn the ambient characteristics of 
an environment rather than focusing on individual, dynamic objects

To provide quantitative support for these visual observations, we 
evaluate the spatial extent of self-attention using attention distance 
(Dosovitskiy et al., 2021), which measures the mean distance between 
query tokens and key tokens, weighted by their respective self-attention 
scores. This metric helps assess how different contrastive strategies 
focus on various aspects of the scene. Figs.  6(a) and 6(b) show the 
attention distances computed for sampled street view images and Im-
ageNet images. Depth corresponds to the network layers in the ViT 
model, ranging from shallow (Depth 1) to deep layers (Depth 12). 
Larger attention distances indicate that the model captures more glob-
ally distributed features, while smaller distances suggest a focus on 
local patterns. Specifically, GSV-spatial exhibits the largest attention 
distance, indicating a tendency to focus on a broader spatial context 
rather than concentrating on individual objects. In contrast, the at-
tention distances of GSV-temporal and GSV-self decrease sequentially, 
suggesting a gradual narrowing of focus to capture more specific details 
within the scenes. Notably, ImageNet-self demonstrates the smallest 
attention distance, reflecting its pre-training on a dataset primarily 
consisting of object-centric images, which leads to a greater emphasis 
on individual objects over the overall spatial arrangement.

6.2.2. GSV-temporal highlights low-frequencies, and GSV-spatial exploits 
high-frequencies

The low-frequency amplitude of an image represents its large-scale 
structure and smooth transitions, primarily encompassing the back-
ground, gradient regions, and general contours. It reflects the overall 
form of the image and broad variations in brightness. Low-frequency 
components are typically key elements in global structure modeling 
and scene consistency understanding, which is why their amplitude is 
generally larger. In contrast, the high-frequency amplitude of an image 
represents finer details, textures, and edges, and is primarily associated 
with regions of rapid changes in the image, such as boundaries and 
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local contrast variations. Although high-frequency amplitudes are rela-
tively smaller, they are crucial for capturing the sharpness and clarity 
of the image and often contain noise signals. In this study, we hypoth-
esize that, compared to GSV-spatial, GSV-temporal is more inclined to 
focus on low-frequency information. This is because temporal-invariant 
characteristics in street view images rely more on global consistency 
and invariant structures, while high-frequency information is more 
susceptible to noise interference in dynamic scenes. To test this hypoth-
esis, we compute the amplitude differences in the Fourier-transformed 
frequency spectrum of intermediate features across various layers of 
the ViT backbone, reporting the relative amplitudes of high and low 
frequencies (Park et al., 2023). Specifically, Figs.  6(c) and 6(d) present 
the relative amplitude results for ImageNet and GSV images under 
different contrast strategies.

The results indicate that models pre-trained on ImageNet focus 
more on high-frequency information, while models pre-trained on GSV 
emphasize low-frequency information. This difference may stem from 
the fact that ImageNet images typically center around object categories 
(e.g., animals, plants, etc.) that require detailed edge and texture detec-
tion, thus highlighting high-frequency information. In contrast, street 
view images feature large-scale street layouts and global structural 
variations, where the models need to capture more low-frequency 
information to understand the overall spatial relationships within the 
scene. Furthermore, we observe that GSV-temporal exhibits the most 
pronounced sensitivity to low-frequency information. This suggests that 
the temporal-invariant characteristics prioritize the consistency of static 
elements, such as street layouts, while being less sensitive to texture 
variations caused by factors like lighting or seasonality. GSV-self, sim-
ilar to GSV-temporal, also focuses more on low-frequency information, 
but due to the need to capture dynamic elements such as pedestrian 
and vehicular flow, it exhibits a slightly higher relative amplitude 
compared to GSV-temporal. On the other hand, GSV-spatial shows a 
stronger focus on high-frequency information. This can be attributed to 
its lesser sensitivity to the overall street layout, as it is more concerned 
with capturing consistency in the surrounding environment, which is 
often conveyed through high-frequency details such as window styles, 
building facades, and material textures.
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Fig. 6. Visualization of attention distance and 𝛥 Log Amplitude across depths for ImageNet and GSV models. Depth refers to the network layers in the ViT 
model, from shallow (Depth 1) to deep layers (Depth 12). (a) and (b) display the attention distance, which represents the average spatial range of the attention 
mechanism in each layer—a larger value indicates that the model attends to more globally distributed features, while smaller values suggest a focus on local 
patterns. (c) and (d) present the 𝛥 Log Amplitude, where higher values (closer to 0) reflect stronger retention of high-frequency information (e.g., edges, textures), 
and lower values (more negative) indicate a focus on low-frequency components, representing global structures or smooth transitions.
7. Conclusion

In this work, we proposed a self-supervised learning framework, 
the spatiotemporal contrastive framework, designed to learn represen-
tations from street view imagery. We systematically implemented and 
evaluated three of its core strategies: Temporal Contrast, Spatial Con-
trast, and Instance Contrast. Our experimental results demonstrate that 
these distinct strategies effectively learn features tailored for different 
urban tasks, achieving significant performance improvements in visual 
place recognition, socioeconomic prediction, and safety perception. 
Furthermore, our in-depth analysis provides valuable insights into how 
each method captures different aspects of the urban environment, 
emphasizing the importance of targeted learning strategies. This study 
provides a valuable benchmark for self-supervised learning in urban 
science and enhances the practical applicability of street view data.

While our implemented strategies perform robustly over typical 
time scales, we recognize their limitations when considering long-
term urban evolution spanning several decades. The Temporal Contrast 
model, for instance, relies on the assumption that a location’s core 
static features (e.g., buildings) persist over time. This assumption may 
be challenged in the face of radical urban transformations, such as 
large-scale demolitions and redevelopment, which can alter a location’s 
visual identity entirely.

This challenge, however, points to a promising future direction that 
is already conceptualized within our framework. The fourth quadrant 
of our framework, Spatio-temporal Contrast, is designed precisely to 
address these long-term dynamics. By learning from different locations 
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at different times, it aims to capture a neighborhood’s long-term core 
identity, a representation more resilient to drastic structural changes. 
Future work should focus on implementing and evaluating this spatio-
temporal strategy. Doing so would extend our framework to model the 
dynamics of urban change over much longer timescales and unlock new 
applications in longitudinal urban analysis.

CRediT authorship contribution statement

Yong Li: Writing – review & editing, Writing – original draft, Visu-
alization, Validation, Software, Resources, Methodology, Investigation, 
Formal analysis, Data curation, Conceptualization. Yingjing Huang: 
Writing – original draft, Visualization, Resources, Methodology, Data 
curation. Fan Zhang: Writing – review & editing, Writing – original 
draft, Supervision, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

We also acknowledge the financial support from the National Nat-
ural Science Foundation of China (Grant No. 42371468). This work 
was supported by the High-performance Computing Platform of Peking 
University.



Y. Li et al. Computers, Environment and Urban Systems 125 (2026) 102393 
Data availability

Data will be made available on request.

References

Arandjelović, R., Gronat, P., Torii, A., Pajdla, T., & Sivic, J. (2018). NetVLAD: CNN 
architecture for weakly supervised place recognition. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 40(6), 1437–1451. http://dx.doi.org/10.1109/
TPAMI.2017.2711011.

Ayush, K., Uzkent, B., Meng, C., Tanmay, K., Burke, M., Lobell, D., & Ermon, S. 
(2021). Geography-aware self-supervised learning. In 2021 IEEE/CVF international 
conference on computer vision (pp. 10161–10170). Montreal, QC, Canada: IEEE, 
http://dx.doi.org/10.1109/ICCV48922.2021.01002.

Boeing, G. (2017). OSMnx: New methods for acquiring, constructing, analyzing, and 
visualizing complex street networks. Computers, Environment and Urban Systems, 65, 
126–139.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J., Bojanowski, P., & Joulin, A. 
(2021). Emerging properties in self-supervised vision transformers. In Proceedings 
of the IEEE/CVF international conference on computer vision (pp. 9650–9660).

Chacra, D. A., & Zelek, J. (2018). Municipal infrastructure anomaly and defect 
detection. In 2018 26th European signal processing conference (pp. 2125–2129). 
Rome: IEEE.

Chen, X., & He, K. (2021). Exploring simple siamese representation learning. In 2021 
IEEE/CVF conference on computer vision and pattern recognition (pp. 15745–15753). 
Nashville, TN, USA: IEEE, http://dx.doi.org/10.1109/CVPR46437.2021.01549.

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework for 
contrastive learning of visual representations. In H. D. III, & A. Singh (Eds.), 
Proceedings of machine learning research: Vol. 119, Proceedings of the 37th international 
conference on machine learning (pp. 1597–1607). PMLR.

Chen, Z., Liu, L., Sa, I., Ge, Z., & Chli, M. (2018). Learning context flexible attention 
model for long-term visual place recognition. IEEE Robotics and Automation Letters, 
3(4), 4015–4022. http://dx.doi.org/10.1109/LRA.2018.2859916.

Chen, X., Xie, S., & He, K. (2021). An empirical study of training self-supervised 
vision transformers. In 2021 IEEE/CVF international conference on computer vision 
(pp. 9620–9629). http://dx.doi.org/10.1109/ICCV48922.2021.00950.

Cheng, J., Tsai, Y.-H., Wang, S., & Yang, M.-H. (2017). Segflow: Joint learning for 
video object segmentation and optical flow. In Proceedings of the IEEE international 
conference on computer vision (pp. 686–695).

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., 
Roth, S., & Schiele, B. (2016). The cityscapes dataset for semantic urban scene 
understanding. In Proceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 3213–3223).

Deng, J., Dong, W., Socher, R., Li, L. J., Kai Li, & Li Fei-Fei (2009). ImageNet: A 
large-scale hierarchical image database. In 2009 IEEE conference on computer vision 
and pattern recognition (pp. 248–255). Miami, FL: IEEE.

Deuser, F., Habel, K., & Oswald, N. (2023). Sample4Geo: Hard negative sampling 
for cross-view geo-localisation. In 2023 IEEE/CVF international conference on com-
puter vision (pp. 16801–16810). Paris, France: IEEE, http://dx.doi.org/10.1109/
ICCV51070.2023.01545.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., 
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. 
(2021). An image is worth 16x16 words: Transformers for image recognition at 
scale. In International conference on learning representations. URL https://openreview.
net/forum?id=YicbFdNTTy, p. ..

Dubey, A., Naik, N., Parikh, D., Raskar, R., & Hidalgo, C. A. (2016). Deep learning the 
city: Quantifying urban perception at a global scale. In B. Leibe, J. Matas, N. Sebe, 
& M. Welling (Eds.), Computer vision – ECCV 2016 (pp. 196–212). Cham: Springer 
International Publishing, http://dx.doi.org/10.1007/978-3-319-46448-0_12.

Fan, Z., Zhang, F., Loo, B. P. Y., & Ratti, C. (2023). Urban visual intelligence: 
Uncovering hidden city profiles with street view images. Proceedings of the National 
Academy of Sciences, 120(27), Article e2220417120.

Gebru, T., Krause, J., Wang, Y., Chen, D., Deng, J., Aiden, E. L., & Fei-Fei, L. (2017). 
Using deep learning and google street view to estimate the demographic makeup 
of neighborhoods across the United States. Proceedings of the National Academy of 
Sciences, 114(50), 13108–13113. http://dx.doi.org/10.1073/pnas.1700035114.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., 
Jia, Y., & He, K. (2018). Accurate, large minibatch SGD: Training ImageNet in 1 
hour. http://dx.doi.org/10.48550/arXiv.1706.02677, arXiv:1706.02677.

Grill, J. B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya, E., Doersch, C., 
Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., et al. (2020). Bootstrap your own 
latent-a new approach to self-supervised learning. In Advances in neural information 
processing systems: vol. 33, (pp. 21271–21284).
12 
Guo, D., Yu, Y., Ge, S., Gao, S., Mai, G., & Chen, H. (2024). SpatialScene2Vec: A self-
supervised contrastive representation learning method for spatial scene similarity 
evaluation. International Journal of Applied Earth Observation and Geoinformation, 
128, Article 103743.

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., & Girshick, R. (2022). Masked autoencoders 
are scalable vision learners. In 2022 IEEE/CVF conference on computer vision and 
pattern recognition (pp. 15979–15988). New Orleans, LA, USA: IEEE, http://dx.doi.
org/10.1109/CVPR52688.2022.01553.

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for 
unsupervised visual representation learning. In 2020 IEEE/CVF conference on 
computer vision and pattern recognition (pp. 9726–9735). Seattle, WA, USA: IEEE, 
http://dx.doi.org/10.1109/CVPR42600.2020.00975.

Huang, Y., Wen, Z., Chi, Y., & Liang, Y. (2024). How transformers learn diverse 
attention correlations in masked vision pretraining. In ICML 2024 workshop on 
theoretical foundations of foundation models.

Huang, Y., Zhang, F., Gao, Y., Tu, W., Duarte, F., Ratti, C., Guo, D., & Liu, Y. (2023). 
Comprehensive urban space representation with varying numbers of street-level 
images. Computers, Environment and Urban Systems, 106, Article 102043.

Klemmer, K., Rolf, E., Robinson, C., Mackey, L., & Rußwurm, M. (2024). SatCLIP: 
Global, general-purpose location embeddings with satellite imagery. arXiv:2311.
17179.

Liu, Y., Zhang, X., Ding, J., Xi, Y., & Li, Y. (2023). Knowledge-infused contrastive 
learning for urban imagery-based socioeconomic prediction. arXiv:2302.13094.

Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic gradient descent with warm 
restarts. In International conference on learning representations. p. ..

Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. In Interna-
tional conference on learning representations. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., & Milford, M. 
J. (2015). Visual place recognition: A survey. IEEE Transactions on Robotics, 32(1), 
1–19.

Mai, G., Lao, N., He, Y., Song, J., & Ermon, S. (2023). Csp: Self-supervised contrastive 
spatial pre-training for geospatial-visual representations. In International conference 
on machine learning (pp. 23498–23515). PMLR.

Manas, O., Lacoste, A., Giro-i Nieto, X., Vazquez, D., & Rodriguez, P. (2021). Seasonal 
contrast: Unsupervised pre-training from uncurated remote sensing data. In 2021 
IEEE/CVF international conference on computer vision (pp. 9394–9403). Montreal, QC, 
Canada: IEEE, http://dx.doi.org/10.1109/ICCV48922.2021.00928.

Mans Larsson, M., Stenborg, E., Hammarstrand, L., Pollefeys, M., Sattler, T., & Kahl, F. 
(2019). A cross-season correspondence dataset for robust semantic segmentation. 
In 2019 IEEE/CVF conference on computer vision and pattern recognition (pp. 
9524–9534). Long Beach, CA, USA: IEEE, http://dx.doi.org/10.1109/CVPR.2019.
00976.

Naik, N., Kominers, S. D., Raskar, R., Glaeser, E. L., & Hidalgo, C. A. (2017). 
Computer vision uncovers predictors of physical urban change. Proceedings of the 
National Academy of Sciences, 114(29), 7571–7576. http://dx.doi.org/10.1073/pnas.
1619003114.

van den Oord, A., Li, Y., & Vinyals, O. (2019). Representation learning with contrastive 
predictive coding. arXiv:1807.03748.

Park, N., Kim, W., Heo, B., Kim, T., & Yun, S. (2023). What do self-supervised 
vision transformers learn? In The eleventh international conference on learning 
representations.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., 
Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models 
from natural language supervision. In International conference on machine learning 
(pp. 8748–8763). PMLR.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). 
Grad-cam: Visual explanations from deep networks via gradient-based localization. 
In Proceedings of the IEEE international conference on computer vision (pp. 618–626).

Stalder, S., Volpi, M., Büttner, N., Law, S., Harttgen, K., & Suel, E. (2024). Self-
supervised learning unveils urban change from street-level images. Computers, 
Environment and Urban Systems, 112, Article 102156.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the 
Royal Statistical Society. Series B. Statistical Methodology, 58(1), 267–288.

Wang, X., Jabri, A., & Efros, A. A. (2019). Learning correspondence from the cycle-
consistency of time. In Proceedings of the IEEE/CVF conference on computer vision 
and pattern recognition (pp. 2566–2576).

Wang, Z., Li, H., & Rajagopal, R. (2020). Urban2vec: Incorporating street view imagery 
and pois for multi-modal urban neighborhood embedding. In Proceedings of the 
AAAI conference on artificial intelligence: vol. 34, (pp. 1013–1020).

Wang, Y., Zhang, J., Kan, M., Shan, S., & Chen, X. (2020). Self-supervised equivariant 
attention mechanism for weakly supervised semantic segmentation. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 
12275–12284).



Y. Li et al. Computers, Environment and Urban Systems 125 (2026) 102393 
Warburg, F., Hauberg, S., López-Antequera, M., Gargallo, P., Kuang, Y., & Civera, J. 
(2020). Mapillary street-level sequences: A dataset for lifelong place recognition. 
In 2020 IEEE/CVF conference on computer vision and pattern recognition (pp. 
2623–2632). http://dx.doi.org/10.1109/CVPR42600.2020.00270.

Wu, Z., Xiong, Y., Yu, S. X., & Lin, D. (2018). Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer 
vision and pattern recognition (pp. 3733–3742).

Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., & Hu, H. (2022). Simmim: 
A simple framework for masked image modeling. In Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition (pp. 9653–9663).

Zaffar, M., Ehsan, S., Milford, M., & McDonald-Maier, K. D. (2021). Memorable maps: 
A framework for re-defining places in visual place recognition. IEEE Transactions 
on Intelligent Transportation Systems, 22(12), 7355–7369. http://dx.doi.org/10.1109/
TITS.2020.3001228.
13 
Zhang, Y., Li, Y., & Zhang, F. (2024). Multi-level urban street representation with 
street-view imagery and hybrid semantic graph. ISPRS Journal of Photogrammetry 
and Remote Sensing, 218, 19–32.

Zhang, F., Salazar-Miranda, A., Duarte, F., Vale, L., Hack, G., Chen, M., Liu, Y., 
Batty, M., & Ratti, C. (2024). Urban visual intelligence: Studying cities with 
artificial intelligence and street-level imagery. Annals of the American Association 
of Geographers, 114(5), 876–897.

Zhang, F., Zhou, B., Liu, L., Liu, Y., Fung, H. H., Lin, H., & Ratti, C. (2018). Measuring 
human perceptions of a large-scale urban region using machine learning. Landscape 
and Urban Planning, 180, 148–160.

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. (2017). Places: A 10 
million image database for scene recognition. IEEE Transactions on Pattern Analysis 
and Machine Intelligence.


