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A B S T R A C T

Urban greenery is a crucial element in building sustainable cities and communities. Despite the widespread
use of satellite and street view imagery in monitoring urban greenery, there are significant discrepancies and
biases in their measurement across different urban contexts. Currently, no literature systematically evaluates
these biases on a global scale. This study utilizes the Normalized Difference Vegetation Index (NDVI) from
satellite imagery and the Green View Index (GVI) from street view imagery to measure urban greenery in ten
cities worldwide. By analyzing the distribution and visual differences of these indices, the study identifies eight
factors causing measurement biases: distance-perspective limitation, single-profile constraint, access limitation,
temporal data discrepancy, proximity amplification, vegetative wall effect, multi-layer greenery concealment,
and noise. Moreover, a machine learning model is trained to estimate the bias risks of urban greenery
measurement in urban areas. We find that bias in most cities primarily stem from an underestimation of GVI.
Dubai and Seoul present fewer areas with overall bias risk, while Amsterdam, Johannesburg and Singapore
present more such areas. Our findings provide a comprehensive understanding of the differences between the
metrics and offer insights for urban green space management. They emphasize the importance of carefully
selecting and integrating these measurements for specific urban tasks, as there is no ‘‘true’’ greenery.
1. Introduction

A more refined and accurate measurement of urban greenery is fun-
damental to building sustainable cities and communities. Urban green-
ery impacts residents’ physical and mental well-being by promoting
walkability and enhancing daily life [1,2]. It also contributes to improv-
ing air quality, enhancing biodiversity, and regulating urban heat [3,4].
Monitoring urban greenery at a large scale is essential for maintaining
the health and functionality of urban green spaces, ensuring they
provide long-term benefits to both people and the environment.

There are two main approaches to measuring urban greenery on
a large scale: satellite imagery-based and street view imagery-based
measurements. Over the past few decades, satellite imagery has consis-
tently been used as a tool for greenery measurement due to its broad
spatial coverage and convenient accessibility [5,6]. Remote sensing
technology can use multispectral and hyperspectral imaging to capture
electromagnetic spectrum information invisible to the human eye, such
as infrared and ultraviolet. These multispectral images are useful for
vegetation index calculation. Indices such as the Normalized Difference

∗ Corresponding author.
E-mail address: fduarte@mit.edu (F. Duarte).

Vegetation Index (NDVI) [7] and the Leaf Area Index (LAI) [8] are
widely used to quantify vegetation. Such indices support large-scale
greenery measurement and tracking temporal changes [6,9]. Alter-
natively, street view imagery has emerged as a resource for urban
greenery measurement in recent years [10]. Street view imagery is
captured by ground-based imaging equipment, such as vehicle-mounted
cameras [11,12]. Such images detail surface features like buildings,
roads, and trees. One widely used metric for measuring urban greenery
in street view imagery is the Green View Index (GVI), which quan-
tifies the proportion of visually perceived green elements within the
images [13]. Various studies have applied GVI as a proxy of urban
greenery [14,15].

Despite the relevance of both satellite and street view imagery
as valuable data sources for urban greenery mapping and analysis,
they both have inherent limitations that prevent them from reflecting
the ‘‘true’’ status of urban greenery. Satellite imagery offers a top-
down view, making it impossible to capture vertical greenery such
as vegetation walls (see Fig. 1(a)). In contrast, street view imagery
https://doi.org/10.1016/j.buildenv.2024.112395
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data mining, AI training, and similar technologies. 
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Fig. 1. Inherent limitations of satellite and street view imagery. (a) Vegetation wall; (b) Tunnel; (c) satellite imagery with 10-m spatial resolution; (d) Street view sampling
distribution.
Source: ChatGPT, Unsplash, Google Earth, and Google Maps.
allows observation of the vertical urban environment, but they are
easily obstructed by tunnels or large trucks (see Fig. 1(b)). Moreover,
in terms of data quality, satellite imagery typically has lower spatial
resolution, making it difficult to distinguish small greenery elements on
the ground. On the other hand, street view imagery is not uniformly dis-
tributed, with some internal roads and public pathways suffering from
inadequate sampling. Such inherent limitations influence not only the
accuracy of greenery measurements but also subsequent analyses and
interpretations [16,17], potentially resulting in misleading conclusions.

Although existing literature recognizes potential biases in satellite
and street view-based measurements of urban greenery across differ-
ent urban environments, these biases and their causes have not been
systematically discussed. For example, [18,19] both noted that satellite-
based measurements often miss vertical greenery, such as individual
trees or other green elements, particularly in densely urbanized ar-
eas [20,21]. [18] suggested using an NDVI:GVI ratio as an indicator
of vertical greenery in such scenarios to address this type of bias. Re-
garding street view measurements, [20] found that the density of street
view sampling points also affects the measurement of urban greenery,
leading to the proposal of a Standardized Green View Index (sGVI)
that calculates the GVI of an area weighted by the locations of the
sampling points. Additionally, there is extensive literature discussing
the correlation between NDVI and GVI, with most studies finding a
moderate correlation, with correlation coefficients ranging approxi-
mately from 0.40 to 0.76 [18,21,22]. These studies provide valuable
insights into the quantitative differences between the two greenery
measurement methods, but the qualitative factors behind them are typ-
ically discussed through local findings combined with specific research
questions. The subtle nuances of these differences and their underlying
factors remain to be fully understood. Furthermore, most past studies
have been conducted on local datasets, and their results may not be
generalizable to other regions [23,24]. Therefore, there is a need to
systematically examine and categorize the causal factors behind the
differences between satellite and street view-based measurements on a
global scale, providing directions for more sensitively interpreting these
indices.

To address this research gap, this study computed the values of
NDVI and GVI across ten cities worldwide, characterized by diverse
2 
geographical locations and climates, and conducted a quantitative anal-
ysis of the differences and trends between them. Based on the char-
acteristics of these differences, we identified eight main factors that
could potentially cause biases. Furthermore, we trained a machine
learning model to assess the risk of bias in greenery measurements
based on satellite and street view data, allowing for an assessment of
greenery measurement bias risks across broader urban areas. Through
this qualitative and quantitative analysis of greenery measurements,
we provide deep insights for future precise measurements of urban
greenery and related research fields. This study not only enhances
our understanding of urban greenery measurement techniques but also
reveals the effectiveness and limitations of different measurement tools
applied in various global cities.

2. Methods

Fig. 2 illustrates the workflow of this study, which comprises five
parts: data collection, greenery extraction, difference analysis, bias
identification, and bias quantification. Initially, we collected Sentinel-
2 satellite imagery and Google Street View imagery across ten global
cities. Subsequently, greenery was extracted from these two distinct
data sources: NDVI was calculated using raster calculation from satellite
images, and GVI was derived using semantic segmentation models from
street view images. These measurements were then aggregated at a
grid spatial scale to represent urban greenery as NDVI and GVI values.
Through statistical and spatial analyses, we identified the global differ-
ences between NDVI and GVI. Finally, we identified the types of biases
and quantitatively estimated the risk of these biases by constructing a
machine-learning model.

2.1. Data collection

We selected ten metropolitan areas as our study areas: Amsterdam,
Barcelona, Boston-Cambridge-Medford-Newton (Boston), Buenos Aires,
Dubai-Sharjah (Dubai), Johannesburg, Los Angeles, Melbourne, Seoul,
and Singapore. These areas were chosen to represent a wide array of
global climates, ecosystems, cultures, and urban environments, thereby
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Fig. 2. The research workflow.
offering a comprehensive understanding of disparity patterns in urban
greenery detection across various geographical contexts.

In alignment with methodologies in existing literature, the data
sources used in this paper are:

Satellite imagery. The European Space Agency launched the
Sentinel-2 constellation, comprising twin satellites, which offers 13
spectral bands with high resolution. Notably, four of these bands,
namely red (665 nm), green (560 nm), blue (490 nm), and visible
and near-infrared (842 nm), have a spatial resolution of 10 m. We
selected Sentinel-2 as it offers higher spatial resolutions, which sur-
passes other open-source satellite datasets such as MODIS and Landsat
series satellites. The collection of Sentinel-2 images was conducted
3 
across ten cities. To ensure data reliability, the Level-2 A product,
containing atmospherically corrected surface reflectance images, was
selected from the various level products of Sentinel-2. To facilitate more
accurate calculations of NDVI [25]. Due to the high temporal resolution
offered by remote sensing technologies, urban greenery measurements
are commonly conducted utilizing imagery acquired during the most
recent cloud-free summer period. Since some cities may consist of
multiple patches, these cities might have data from multiple dates.
Detailed collection dates are presented in Table 1.

Street view imagery. To obtain street view imagery, the road
network data for each city was acquired from OpenStreetMap by the
OSMnx library [26]. Subsequently, query points were established along
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Table 1
Data description of each of the metropolitan areas.

Metropolitan area Country Collection date of Satellite imagery # of Street view images

Amsterdam Netherlands June 09, 2023; June 14, 2023 488,956
Barcelona Spain April 02, 2023 430,240
Boston United States April 02, 2023; May 29, 2023; June 11, 2023 467,836
Buenos Aires Argentina January 23, 2023 265,956
Dubai United Arab Emirates June 12, 2023 700,892
Johannesburg South Africa January 11, 2023 596,204
Los Angeles United States March 24, 2023 880,548
Melbourne Australia January 27, 2023 915,860
Seoul South Korea June 16, 2023 586,094
Singapore Singapore March 16, 2023 712,892
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the road network, with a regular interval of 15 m. The Google Street
View (GSV) Application Programming Interface (API) was then em-
ployed to retrieve and download street view images. A substantial
collection of street view images, totaling 3,681,364, was successfully
obtained from 920,341 unique locations across the ten cities. Each
location in the dataset includes a unique point ID, year and month of
image capture, and its corresponding coordinates, accompanied by four
street view images corresponding to the cardinal directions, namely
North, East, South, and West. The data used in this study comes from
the latest version of Google Street View as of May 2023. However, due
to varying update frequencies for each sampling point, the images may
ave been captured at different times, ranging from as recent as one
onth ago to as far back as ten years.

2.2. Greenery extraction

For satellite imagery, we used the Normalized Difference Vegetation
Index (NDVI), a well-established measure initially by Rouse et al. [7]
or monitoring ground-level vegetation. The NDVI was calculated with
0-m resolution data of Sentinel-2. It is defined as:

𝑁 𝐷 𝑉 𝐼 =
𝑅𝑛𝑖𝑟 − 𝑅𝑟𝑒𝑑
𝑅𝑛𝑖𝑟 + 𝑅𝑟𝑒𝑑

(1)

where 𝑅𝑛𝑖𝑟 and 𝑅𝑟𝑒𝑑 represent the spectral bands at near-infrared
(842 nm) and red (665 nm), respectively. Such a unit-less index is
normalized to yield values ranging between −1 and 1, wherein a value
of 1 corresponds to full vegetation coverage. Considering that negative
values commonly indicate the presence of clouds and water [23], such
values were adjusted to 0, implying an absence of greenery. To facilitate
comparison with street view-based measurements, NDVI values were
aggregated according to grid units at different scales.

For street view imagery, we used the Dense Prediction Transformer
(DPT) [27] model for semantic segmentation, as it has been validated
hrough multiple studies [28]. The DPT model used in this study

was pre-trained on the ADE20K dataset [29] and achieved a pixel-
level segmentation accuracy of 83.11% and a mean Intersection over
Union (mIoU) of 49.02%, outperforming mainstream models such as
Deeplabv3 [27]. It categorizes each pixel into one of 150 semantic
lasses. The calculation of GVI focuses on identifying greenery elements
resent in the images. In this study, we utilized five greenery classes:

‘tree’’, ‘‘grass’’, ‘‘plant’’, ‘‘palm tree’’, and ‘‘field’’. Although ‘‘field’’ is
not traditionally considered a greenery element, we included it to align
with the NDVI calculation. Moreover, due to the distribution limitations
of street view data, our study area is predominantly urban, where the
‘‘field’’ category is rarely observed. As a result, its impact on the overall
findings is minimal. The GVI in this study was defined consistent with
existing literature [13,30] as the ratio of greenery pixels to the total
ixels in each image. It is defined as:

𝐺 𝑉 𝐼 =
𝑁𝑔 𝑟𝑒𝑒𝑛𝑒𝑟𝑦
𝑁𝑡𝑜𝑡𝑎𝑙

(2)

where 𝑁𝑔 𝑟𝑒𝑒𝑛𝑒𝑟𝑦 represents the number of pixels of greenery classes, and
𝑡𝑜𝑡𝑎𝑙 represents the number of total pixels. The GVI values fall within

he range of 0 to 1, where a value of 1 indicates full vegetation coverage

nd a value of 0 signifies the absence of greenery in the image.

4 
Both NDVI and GVI metrics range from 0 to 1, with higher values de-
noting greater vegetation coverage. To maintain consistency in spatial
scales when comparing NDVI and GVI, we aggregated NDVI and GVI
values into 100-m grids. The grids that lack street view sampling points
are excluded from further analysis. It should be noted that grids with
only a small amount of street view sampling points were also included
n the analysis. This is because the variation in urban environments
akes it difficult to establish a uniform and reasonable threshold to
etermine whether the data quantity is sufficient to represent the grid.
dditionally, we believe that sparse sampling points may be one of the

actors contributing to bias.

2.3. Difference analysis

This study compares the differences between NDVI and GVI through
both statistical and spatial analyses. In the statistical analysis, we
focus on the distribution of the quantiles of NDVI and GVI. For the
patial analysis, we employ hotspot analysis to explore the spatial
istribution patterns of the differences. Initially, we perform min–max

normalization on the values of NDVI and GVI to ensure that both are
compared on the same scale. Subsequently, we conduct hotspot analysis
on the normalized differences using the Getis–Ord Gi* statistic [31],
a method widely used to reveal localized spatial clustering patterns.
This granular approach allows us to precisely identify significant hot
and cold spots, uncovering critical clusters where NDVI is significantly
higher than GVI, or vice versa. The Getis–Ord Gi* statistical analysis
was conducted using ArcGIS Pro 3.0, with the conceptualization of
spatial relationships set to inverse distance squared and the Euclidean
distance method applied.

2.4. Bias identification

For identification of bias types, we first isolated locations which
resented the highest standardized difference between NDVI and GVI.
hese were grouped in two categories — locations where NDVI ex-
eeded GVI and locations where GVI exceeded NDVI. For both cate-
ories, a qualitative visual analysis was undertaken by the authors and
 primary causal factors behind the differences were identified and
ummarized for each group.

We subsequently developed a dataset annotated with multiple types
of bias. Specifically, we divided the grid data of each city into 10
groups based on the standardized differences between NDVI and GVI.
For each group, we randomly selected 20 samples, resulting in a total
of 2000 samples. Each sample includes Sentinel-2 satellite imagery,
high-resolution Google Earth imagery, and several street view images
orresponding to the grid. We annotated the dominant bias factor for
ach sample, with the addition of a ‘‘no bias’’ category. Samples where
he bias factors w composed of multiple factors were excluded. The
inal dataset contains 1897 valid samples, which we believe clearly
epresent the characteristics of different bias types. The annotation

of these samples was accomplished using the open-source software
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Label Studio.1 This process not only aids in understanding the specific
auses of biases but also provides a data foundation for further machine
earning analysis.

2.5. Bias quantification

To quantitatively analyze bias types in urban areas, we trained a
achine learning model using the bias-annotated dataset. Specifically,

wo-thirds of the data were randomly selected as the training set,
hile the remaining one-third was used as the test set. As illustrated

n Fig. 2, to precisely analyze the material features and structures
of urban spaces, we employed 0.6-m resolution RGB Google Earth
mages in place of 10-m resolution multispectral Sentinel-2 imagery.

e optimized the model’s performance on a small sample set by
xtracting features from satellite and street view images using two
retrained models. The satellite image features were extracted using
he GeoRSCLIP model, pretrained on the RS5M dataset [32], while the

street view image features were extracted using the ResNet18 model,
pretrained on the Places365 dataset [33]. Both models were pretrained
n large-scale image datasets and are widely used for urban scene
ecognition. Their deep feature representations capture the underlying
emantic understanding of urban environments, making them highly
uitable as feature extractors for our study.

Feature extraction resulted in a 512-dimensional feature vector for
ach grid from satellite images and multiple 512-dimensional feature
ectors from street view images. By averaging the street view image
eatures, we obtained a representative vector for each grid. These fea-
ures were then concatenated, forming a 1024-dimensional vector for
ach grid. Utilizing these feature vectors, we trained a Support Vector
achine (SVM) model to classify bias types, setting the regularization

arameter at 100 and using the Radial Basis Function (RBF) kernel.
ue to the imbalanced distribution of samples across categories, we
pplied class weighting to ensure the model appropriately adjusted for
he differing representation of each bias type. All feature extraction and
odel training were conducted using Python’s PyTorch and scikit-learn

ibraries.

3. Results

3.1. Differences between satellite-based and street view-based urban green-
ery

NDVI and GVI serve as representative indices for satellite-based and
street view-based urban greenery, respectively. The choice of a 100-m
grid was made to ensure both data representativeness and measurement
accuracy. As a finer spatial resolution, a 100-m grid effectively illus-
trates the characteristics and differences of urban greenery as measured
from satellite and street view perspectives.

Fig. 3(a) illustrates the statistical distribution of NDVI and GVI
across various cities, demonstrating a general alignment in their rep-
resentation of overall urban greenery. For instance, cities like Dubai
and Seoul exhibit generally low greenery, whereas Johannesburg, Am-
sterdam, and Boston display relatively high levels of urban greenery.
Despite this consistency, there are notable differences between NDVI
nd GVI. Specifically, in cities such as Buenos Aires, Singapore, and
elbourne, GVI values are significantly higher than those of NDVI. For

nstance, in Singapore, the median GVI value is 0.2465, which is 65%
igher than the median NDVI value of 0.1488.

To enhance the comparison of NDVI and GVI differences at a finer
granularity, we standardized the NDVI and GVI data for each city and
onducted a hot and cold spot analysis based on these normalized
ifferences. The results are depicted in Fig. 3(b). In this figure, hot
pots represent areas where GVI is significantly lower than NDVI, while

1 https://labelstud.io/
 t

5 
cold spots indicate regions where GVI substantially exceeds NDVI. The
nalysis reveals that most cities display a network-like distribution of
ot spots, with Boston exhibiting a patchy distribution. As for cold
pots, while most cities show sporadic distributions, in Los Angeles and
ingapore, these areas are predominantly concentrated within urban
enters.

3.2. Factors contributing to measurement biases

Statistical and geographical analyses both indicate significant differ-
ences between NDVI and GVI in measuring urban greenery, particularly
at a fine-grained level. These differences are closely associated with
the methods of data collection and the physical environment of the
ities. To better understand the reasons behind the differences between
DVI and GVI, we visually annotated the primary factors contributing

o these discrepancies. The Sentinel-2 data used for calculating NDVI
as a resolution of 10 m, which limits its ability to distinguish ele-

ments in 100-m grids. Consequently, in this section, we utilized Google
Satellite Imagery with a higher resolution of 0.6 meters to enhance our
understanding of the visual differences.

Four primary factors are annotated, which are responsible for under-
estimating urban greenery in street view imagery: distance-perspective
limitation, single-profile constraint, access limitation, and temporal
data discrepancy.

Distance-Perspective Limitation: Street view imagery’s depiction
of distant vegetation suffers from pixel representation limitation due
to visual perspective, an issue not present in satellite images. Fig. 4(a)
illustrates the challenge, showcasing how distant vegetation in Ams-
erdam becomes indistinct, especially when compared with fields or
rasslands (see Fig. 4(b)). This limitation becomes more apparent in

areas with broader roads, making the vegetation near these roads seem
more distant to the camera.

Single-Profile Constraint: At forest boundaries adjacent to roads,
street view imagery often captures merely one side of the forest,
especially in the absence of internal roads, as demonstrated in Fig. 4(c).
In contrast, satellite imagery, with its overhead view, provides a more
omprehensive portrayal of the forest, underscoring the restricted per-

spective of street view.
Access Limitation: Green spaces that are obstructed by the linear

perspective of street view or are inaccessible. Examples include road
tructures such as overpasses and tunnels and areas with access limita-

tions, such as parks, schools, and private gardens. Fig. 4(d) provides
n example, highlighting the inability of street view imagery, taken
rom an overpass, to capture the greenery at ground level, a challenge
ot present in satellite imagery. Furthermore, the exclusion of private

gardens from the public collection in street view imagery, as illustrated
n Fig. 4(e), adds to the underestimation.
Temporal Data Discrepancy: The infrequency of updates in street

iew imagery can misrepresent real-world greenery, especially when
onsidering seasonal shifts and changes in land use. For example, in

Boston, the climatic conditions combined with certain tree species
result in seasonal leaf fall or snow cover, causing a marked underrepre-
sentation of greenery in street view images taken during fall and winter,
as shown in Fig. 4(f). Satellite imagery, with its more frequent updates,
often sidesteps this issue. Similarly, recognizing temporal land use
changes promptly is imperative. A construction zone in Dubai depicted
in street view, as presented in Fig. 4(g), is shown to be a meadow in
the most recent satellite image.

Another four factors are detected, which render street view imagery
greener than satellite imagery: proximity amplification, vegetative wall
effect, multi-layer greenery concealment, and noise.

Proximity Amplification: In street view imagery, the perception of
nearby vegetation is often exaggerated due to the intrinsic properties
f visual perspective. Such vegetation occupies a substantial portion of
he image, as demonstrated in Fig. 5(a). A tree prominently displayed

https://labelstud.io/
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Fig. 3. Differences between NDVI and GVI. (a) Statistical distribution of NDVI and GVI across ten cities. The box shows the interquartile range (IQR), with the median represented
by a line inside the box. Whiskers extend to 1.5 times the IQR, and outliers are plotted as individual points. The cities are arranged in order of their mean NDVI values; (b) Spatial
distribution of hot and cold spots. Hot spots denote areas where GVI is significantly lower than NDVI, and cold spots signify regions where GVI substantially exceeds NDVI.
in the street view might be one of the few green elements in the sur-
rounding environment. It is essential to note that a significant portion
of such areas, as seen in Fig. 5(a), may be non-green spaces such as
parking lots. It highlights how the potential for uneven distribution of
6 
street view imagery can exaggerate the presence of greenery in urban
environments that have sparse vegetation.

Vegetative Wall Effect: Vertical vegetation features can present a
continuous green wall. This is exemplified in two forms: the vine wall
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Fig. 4. Four factors of satellite imagery being greener than street view imagery. (a)–(b) Distance-perspective limitation; (c) Single-profile constraint; (d)–(e) Access limitation;
(f)–(g) Temporal data discrepancy.
and the tree wall. Fig. 5(b) showcases the vine wall in street view
imagery, a green facade alongside roads. In contrast, satellite imagery
may obscure or diminish such vertical features. Tree species with thick
canopies, when densely planted, can create a tree wall, which might
appear merely as a thin green strip in satellite views, as depicted in
Fig. 5(c).
7 
Multi-layer Greenery Concealment: Diverse vegetation types, such
as trees, shrubs, and grasses, are visually discernible in profile views, as
in street view imagery. Satellite imagery, on the other hand, predomi-
nantly captures the uppermost vegetation layer. This leads to potential
underrepresentation, as seen in Fig. 5(d), where under-canopy shrubs
visible in street view are absent in the satellite counterpart.
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Fig. 5. Four factors of street view imagery being greener than satellite imagery. (a) Proximity amplification; (b)–(c) Vegetative wall effect; (d) Multi-layer greenery concealment;
(e) Noise.
Noise: Interference during satellite image acquisition, notably cloud
cover, can mask underlying vegetation. Fig. 5(e) portrays a region with
substantial forest cover. However, the satellite-derived NDVI value is
considerably lower than the GVI, suggesting an obstruction in image
acquisition. Detailed examination of the Sentinel-2 image reveals per-
sistent cloud cover. Even with advanced data processing, certain clouds
remain visible in the Google Satellite imagery, hinting at possible
perennial cloud presence, thus influencing accurate greenery quantifi-
cation.

3.3. Quantification of bias types

To explore the bias risks associated with urban greenery, we created
a dataset annotated with various types of biases. This dataset includes
eight distinct bias factors as well as a ‘‘no bias’’ category, with the
distribution of these categories presented in Table 2. We then trained
a machine learning model to identify these bias types. The model
achieved an overall accuracy of 63.16%, a weighted average F1 score
8 
Table 2
Categories of the bias-annotated dataset.

Category # of samples

Distance-Perspective Limitation 315
Single-Profile Constraint 81
Access Limitation 493
Temporal Data Discrepancy 152
No Bias 753
Proximity Amplification 47
Vegetative Wall Effect 22
Multi-layer Greenery Concealment 30
Noise 4

of 0.62, and a weighted average recall of 0.63. Using this model, we
can estimate the bias risk of the whole urban area.

We analyzed and compared the density distributions of NDVI and
GVI across different predicted bias types, as shown in Fig. 6. Most bias
types exhibit significant differences in the density peaks of NDVI and
GVI. For example, the GVI distribution in the single-profile constraint
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Fig. 6. Kernel density distributions of NDVI and GVI in different bias types.
is relatively dispersed. This is likely due to the diversity of scenes that
lead to this bias, such as forest edges, where the visibility of vegetation
adjacent to tree walls has minimal impact on the occurrence of this
bias, resulting in a more diffuse distribution. Overall, the distribution
patterns of most bias types align with our assumptions regarding the
differences between NDVI and GVI. However, in the case of the access
limitation, GVI shows a higher overall density compared to NDVI,
which deviates from our anticipated characterization of this bias. This
discrepancy may arise from the complexity of this type of scene,
which not only involves physically inaccessible areas, such as beneath
overpasses, but also legally restricted spaces, such as private gardens.
These factors make it challenging for the machine learning model to
fully capture the intricacies of this bias. In Section 4.3, we further
discuss the limitations of the machine learning model; nonetheless, it
effectively captures certain characteristics of bias risks.

Estimation results for bias risks across ten cities are presented in
Fig. 7(a). It is apparent that bias in all cities primarily stems from
the underestimation of GVI, with a notable exception in Barcelona
where a significant proportion of bias is due to the underestimation
of NDVI. Dubai and Seoul exhibit relatively fewer areas with bias
risk, with total proportions of only 0.0220 and 0.0234, respectively.
In contrast, Amsterdam, Johannesburg, and Singapore show slightly
higher proportions of areas at risk, with total proportions of 0.1438,
0.1448, and 0.1453, respectively. Additionally, the predominant type
of bias varies by city; for instance, Melbourne mainly faces issues due
to access limitations, Boston due to temporal data discrepancy, and
Amsterdam due to distance-perspective limitations.

Figs. 7(b), (c), and (d) depict the spatial distribution of bias types
in Boston, Amsterdam, and Barcelona, respectively. In Boston, most
of the northern regions are affected by temporal data discrepancies,
while the highway areas in Amsterdam prominently feature distance-
perspective limitations. Similarly, Barcelona faces distance-perspective
limitations, but certain areas in the northwest and southwest also
exhibit concentrated risks of proximity amplification bias.

4. Discussion

4.1. No true Greenery

This paper systematically identifies eight principal factors contribut-
ing to bias from a global perspective: distance-perspective limitations,
single-profile constraints, access restrictions, temporal data discrep-
ancies, proximity amplification effects, vegetative wall effects, multi-
layered greenery concealment, and noise. We have quantitatively esti-
mated the bias risks prevalent across all urban areas. It is important to
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note that while we have identified the primary factors causing biases in
these regions, multiple factors may interact, leading to a greater overall
bias or compensating for one another to reduce the apparent bias. For
instance, an area may simultaneously exhibit access limitations and
vegetative wall effects, whose combined impact might minimize the
differences between the NDVI and GVI measurements.

These biases are largely attributable to the methods and character-
istics of data collection. With the ongoing advancement of technology,
it is hoped that these biases could be alleviated or even resolved to
some extent. Our findings indicate that most biases stem from the
underestimation of GVI. In some areas captured by street view imagery,
the spatial resolution may be low and the sampling points sparse,
which could lead to an insufficient representation of greenery within
the area, resulting in biases such as distance-perspective limitations
and proximity amplification. The spatial sampling scope of street view
is limited, further leading to biases associated with access limitations.
For instance, GSV primarily covers major urban roads and often fails
to capture significant green areas within many street blocks, such
as football fields, private gardens, and parks. It is also worth noting
that GSV’s sampling rarely extends to urban peripheries and covers
only about a hundred countries, not the entire globe. Additionally, the
temporal resolution of street view sampling is another major source of
bias. However, the emergence of new sampling devices, such as the
increasing use of smaller data collection vehicles like electric bicycles
in neighborhoods and parks in China, may reduce biases related to
access limitations. Moreover, the integration of official street view data
from platforms like Google Maps and Baidu Map with crowdsourced
street view data such as Mapillary may help alleviate issues of sparse
sampling points.

With the intensification of urbanization and the emergence of new
vertical greenery elements [34,35], the challenges for satellite-based
urban greenery measurements are also increasing. The commonly used
Sentinel-2 images have a spatial resolution of only 10 m, which makes it
challenging to conduct finer greenery measurements. Moreover, current
conventional optical sensors struggle to penetrate tree canopies and are
frequently obstructed by cloud cover, causing biases such as multi-layer
greenery concealment and noise. However, the gradual widespread
adoption of new sensors is expected to provide satellite imagery with
higher spatiotemporal resolutions, and the use of technologies like
radar enhances penetration capabilities. These new technologies could
help mitigate biases to some extent.

Since satellite and street view imagery each capture different as-
pects of urban greenery [23,36], integrating these two sources may
provide a representation close to the ‘‘true’’ state of urban greenery.
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Fig. 7. Quantification of bias types. (a) Proportional distribution of different bias types across ten cities; (b) Spatial distribution of bias types in Boston; (c) Spatial distribution of
bias types in Amsterdam; (d) Spatial distribution of bias types in Barcelona.
Numerous studies have already explored the fusion of satellite and
street view imagery to more comprehensively characterize urban en-
vironments, and this approach is equally applicable to urban greenery.
For instance, some research has proposed using the ratio of NDVI to
GVI as a new index to indicate the intensity of greenery in the vertical
space [18]. Other methods of integration remain a promising area for
future research.

4.2. Implications for urban design and planning

First, we highlight the main factors that contribute to the biases in
urban greenery measurements. Given the significance of urban greenery
in cities, it is crucial to acknowledge potential risks associated with
utilizing biased urban greenery data as a basis for guiding urban design
and planning decisions. For instance, relying solely on street view-based
urban greenery to determine locations for adding green spaces may lead
to erroneous decisions due to factors such as distant or nearby greenery,
which could impact the overall effectiveness of such interventions.

Second, the detailed analysis of the two measurements in describing
urban greenery offers valuable insights for urban design and plan-
ning optimization. Leveraging the disparities between the two mea-
surements, urban planners can identify potential areas of inaccessible
10 
greenery. Consequently, policies such as the removal of unnecessary
fences and other barriers can be implemented to enhance public access
to urban greenery. These findings can serve as valuable guidance for
urban design and planning practices to enhance the overall quality and
accessibility of urban green spaces.

4.3. Study limitations and future challenges

Although this study trained a machine learning model to detect
bias across broad urban areas, the model’s accuracy is not particularly
high. One contributing issue is the significant imbalance in the data, as
seen in Table 2, where the number of samples in the ‘‘noise’’ category
is very small. This scarcity likely makes it difficult for the model to
effectively learn the characteristics of this type of bias. Additionally, the
machine learning method employed is relatively simple, and the feature
extraction models are primarily designed for urban scene recognition.
As a result, it may not capture the distinctions between different types
of bias effectively. Future approaches, such as using self-supervised
or semi-supervised learning methods, may better enable the model to
extract bias-related features. Moreover, bias may result from a com-
bination of multiple factors, making it difficult even for humans to
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determine the primary factor. This complexity, driven by the urban
environment and the data collection methods, presents a significant
challenge for the automated detection of bias risk. Furthermore, the
model’s performance may vary across different regions or city types
due to factors such as climate, urban density, and greenery typologies.
However, exploring these regional differences requires additional data,
including detailed climate information and urban morphological char-
acteristics across a larger number of cities, as well as significantly more
extensive annotation work. In future work, expanding the dataset to
include more cities from diverse climatic zones and urban forms would
enable a more comprehensive assessment of the model’s effectiveness
in different contexts.

5. Conclusion

In summary, this study underscores the complexities and inherent
biases associated with measuring urban greenery through satellite and
treet view imagery. By systematically identifying eight main factors

contributing to these biases, we have highlighted the discrepancies
between NDVI and GVI measurements across various global cities. The
quantification of bias types and their spatial distributions provides
a nuanced understanding of how these factors manifest in different
urban environments. These insights are crucial for urban planners
and policymakers aiming to enhance the accuracy of urban greenery
assessments, which are vital for sustainable urban development and
improving the quality of life for city residents.

The research also opens avenues for future work, including the
development of advanced methodologies to reduce measurement biases
nd the exploration of additional data sources. As cities continue to
row and evolve, the need for precise and comprehensive greenery
easurements becomes increasingly important, necessitating continu-

us advancements in technology and methodology. This study provides
a foundation for such future explorations and contributes to the broader
discourse on urban sustainability and environmental planning.
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