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A B S T R A C T   

Street-level imagery has emerged as a valuable tool for observing large-scale urban spaces with unprecedented 
detail. However, previous studies have been limited to analyzing individual street-level images. This approach 
falls short in representing the characteristics of a spatial unit, such as a street or grid, which may contain varying 
numbers of street-level images ranging from several to hundreds. As a result, a more comprehensive and 
representative approach is required to capture the complexity and diversity of urban environments at different 
spatial scales. To address this issue, this study proposes a deep learning-based module called Vision-LSTM, which 
can effectively obtain vector representation from varying numbers of street-level images in spatial units. The 
effectiveness of the module is validated through experiments to recognize urban villages, achieving reliable 
recognition results (overall accuracy: 91.6%) through multimodal learning that combines street-level imagery 
with remote sensing imagery and social sensing data. Compared to existing image fusion methods, Vision-LSTM 
demonstrates significant effectiveness in capturing associations between street-level images. The proposed 
module can provide a more comprehensive understanding of urban spaces, enhancing the research value of 
street-level imagery and facilitating multimodal learning-based urban research. Our models are available at https 
://github.com/yingjinghuang/Vision-LSTM.   

1. Introduction 

Urban spaces have become increasingly complex and challenging to 
study due to the rapid growth of cities. Recent years have seen a sig-
nificant transformation in urban research with the emergence of a new 
data source, street-level imagery, which has been widely adopted as a 
novel tool for observing large-scale urban environments in unprece-
dented detail (Biljecki & Ito, 2021; Duarte & Ratti, 2021; Ibrahim, 
Haworth, & Cheng, 2020). Compared to remote sensing imagery, street- 
level imagery offers a human-like perspective of urban spaces, providing 
a unique view of the environment that cannot be achieved through a 
nadir view (Chen et al., 2022). With recent advancements in deep 
learning and computer vision techniques, researchers can now auto-
matically and efficiently extract high-level semantic information from 
street-level imagery. These latent features not only provide visual cues 

that shape human experiences of urban spaces, but also offer valuable 
insights into the socioeconomic status and human dynamics within cities 
(Fan, Zhang, Loo, & Ratti, 2023; Khosla, An An, Lim, & Torralba, 2014; 
Zhang, Wu, Zhu, & Liu, 2019). The growing importance of street-level 
imagery in urban research and its ability to provide fine-grained de-
tails of urban spaces has propelled it to the forefront of research in urban 
planning and policymaking. 

Previous studies have predominantly focused on analyzing individ-
ual street-level images or sample points (Seiferling, Naik, Ratti, & 
Proulx, 2017; Zhang, Zhou, Ratti, & Liu, 2019). For instance, the study 
conducted by Zhang et al. (2018) examined human perceptions based on 
individual street-level images, while Li et al. (2015) employed street- 
level panorama imagery to compute the green view index at sampling 
points. Such approach can only capture the local characteristics of the 
urban scenes but falls short in representing the characteristics of a 
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spatial unit, such as a street, grid, or block (Feng et al., 2021; Huang, 
Yang, Li, & Wen, 2021). However, urban landscapes and urban functions 
are organized based on spatial units at varying spatial scales. By 
analyzing street-level imagery in spatial units, researchers can effec-
tively explore urban environments across diverse spatial scales, thereby 
fostering a spatially coherent perception of these spaces in a more 
comprehensive environmental context. Moreover, the utilization of 
street-level imagery to study these units offers a unique opportunity to 
combine them with other data sources for multimodal learning. Multi-
modal learning allows for a more holistic comprehension of urban 
spaces, avoiding the isolation of street-level imagery from other 
important contextual data sources (Barbierato, Bernetti, Capecchi, & 
Saragosa, 2020; Ye, Zhang, Mu, Gao, & Liu, 2021). 

In practice, the utilization of street-level imagery to represent urban 
spatial units presents a significant challenge due to the highly varying 
numbers of street-level images across different spatial units. Fig. 1 il-
lustrates the distribution of street-level sample points in Shenzhen, 
revealing a significantly higher concentration of sample points in the 
downtown area relative to suburban regions. This is due to the nature of 
the street view sampling method, which follows the road network, 
which is typically denser and more complex in downtown regions than 
in suburban areas. In this case, there is a significant variation in the 
number of samples across spatial units, which would result in an 
imbalanced training set for deep learning models. To address this 
challenge, previous studies used pre-trained models to extract features 
from street-level images, and then employed numerical computing 
methods such as mean and maximum values to fuse these hidden fea-
tures within a spatial unit (Verma, Jana, & Ramamritham, 2020). For 

example, Liu et al. (2021) used a pre-trained PSPNet to extract features 
from each street-level image, and subsequently averaged them as an 
environmental feature based on the unit. However, such approaches 
may fail to capture the semantic and spatial associations between street- 
level images within a spatial unit, which form local features that cannot 
be fully captured using numerical computing methods. 

To address this challenge, this study proposes a novel vision long 
short-term memory (VisionLSTM) module to obtain vector representa-
tions from varying numbers of street-level images in spatial units. This 
module combines the advantages of convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs). CNN is utilized to extract 
the semantic features of each image as local features of spatial units, 
while RNN is applied to capture the associations among these local 
features. Inspired by natural language processing, this module considers 
the varying numbers of street-level images as an unordered sequence, 
allowing it to effectively extract overall features. 

To validate the effectiveness of Vision-LSTM, this study conducts a 
series of experiments in Shenzhen to recognize urban villages, which are 
informal settlements resulting from rapid urbanization in China (Li & 
Wu, 2013). Due to their complex residential structures, urban villages 
exhibit intricate visual morphology and human activity patterns. Three 
types of multimodal information, including remote sensing imagery, 
street-level imagery, and social sensing data, are fused to accurately 
characterize urban villages and achieve reliable recognition results. The 
experiments demonstrate the efficacy of Vision-LSTM in capturing as-
sociations between street-level images and the benefits of multimodal 
learning at the spatial unit scale, which combines street-level imagery 
with other informative data. Such results enhance the research value of 

Fig. 1. Distribution of available street-level images in Shenzhen. There is a significant disparity in the number of samples across spatial units.  
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street-level imagery and facilitate multimodal learning-based urban 
research to deepen our understanding of urban spaces. 

2. Related work 

2.1. Using street-level imagery to understand urban spaces 

Companies such as Google, Tencent, and Baidu now offer street view 
services that provide a detailed portrayal of urban spaces from a human 
perspective view. The street-level imagery collected by these companies 
comprehensively covers the road networks of most cities worldwide, 
offering an abundant data source for quantitative analysis of cities’ 
physical visual environment (Biljecki & Ito, 2021). Street-level imagery 
has inherent advantages over traditional data sources, including easy 
access, high spatiotemporal coverage, and objective and standardized 
views of the built environment from embedded vantage points (Ibrahim 
et al., 2020; Kang, Zhang, Gao, Lin, & Liu, 2020; Rzotkiewicz, Pearson, 
Dougherty, Shortridge, & Wilson, 2018). Artificial intelligence tech-
niques have facilitated the widespread use of street-level imagery in 
quantitative features of urban spaces. This enables researchers not only 
to represent and analyze physical space quantitaively but also to infer 
the socioeconomic status of urban areas (Helbich et al., 2019; Kang, 
Zhang, Gao, Peng, & Ratti, 2021; Liang, Zhao, & Biljecki, 2023; Sun, 
Zhang, Duarte, & Ratti, 2022). 

Street-level imagery enables the spatial distribution of scene ele-
ments in physical urban spaces to be accessed. For example, an algo-
rithm was developed by Doersch, Singh, Gupta, Sivic, and Efros (2012) 
that automatically distinguishes Paris from other cities using features 
like windows and balconies in street-level imagery. Using deep learning 
models, street-level imagery from numerous cities worldwide was 
analyzed to extract the percentage of vegetation, enabling a comparison 
of greenery across these urban areas (Li et al., 2015; Li & Ratti, 2018; 
Seiferling et al., 2017). Furthermore, by combining information such as 
shooting angles and geometric features of street-level imagery, it is 
possible to estimate sky openness under specific observation viewpoints 
(Gong et al., 2018; Ye, Zeng, Shen, Zhang, & Lu, 2019), the coverage 
area of solar radiation (Li & Ratti, 2018), and other factors. This can help 
to estimate the photovoltaic potential of the built-up area of the city (Li 
& Ratti, 2019; Liu et al., 2019) and areas where vehicle driving may 
cause solar glare (Li, Cai, Qiu, Zhao, & Ratti, 2019). 

In addition to providing visible physical information about urban 
spaces, street-level imagery can also reveal hidden information related 
to residents’ perceptions and socio-economic status. Zhang et al. (2018) 
utilized street-level imagery and deep learning to analyze the spatial 
distribution of human perceptions in Beijing and Shanghai, and further 
explored the “perception bias” between such perceptions and actual 
criminal data (Zhang, Fan, Kang, Hu, & Ratti, 2021). Furthermore, 
street-level imagery can also be used to predict house prices based on 
house photos and the surrounding environmental conditions (Kang 
et al., 2021). Street-level imagery has also been widely utilized in urban 
function recognition to uncover urban form (Cao et al., 2018; Gong, Ma, 
Kan, & Qi, 2019). 

It is worth noting that most of these current studies focus only on the 
semantic representation of individual images, while ignoring the asso-
ciations among multiple street-level images within a spatial unit. Link-
ing the image semantics and spatial semantics of multiple street-level 
images in a spatial unit allows for an overall description of the urban 
spaces, thus allowing for a spatially coherent perception and supporting 
the analysis of urban space at different spatial scales, such as streets and 
blocks. Therefore, this study developed a deep learning module, Vision- 
LSTM, to address this issue. 

2.2. Fusion approaches for representing regional features 

In the context of fusing data from multiple locations to represent a 
regional feature, previous studies have predominantly relied on 

employing statistical methods. For instance, it’s common practice to use 
points of interest (POIs) categories  within a region as a means to 
represent its regional functionality (Yuan, Zheng, & Xie, 2012). Simi-
larly, Kang et al. (2019) formulated emotional indices, such as the Joy 
Index and Average Happiness Index, to aggregate point-based emotion 
to place emotion. Regarding time-series data at the point level, Yao et al. 
(2022) employed a weighted version of the dynamic time warping 
barycentric averaging algorithm for the integration of time series of 
multiple buildings. This algorithm assigns different weights to different 
time series to preserve the time series’ patterns. 

Similar approaches are also common for the fusion of varying 
numbers of images. A prevalent strategy in this regard, particularly in 
deep learning neural networks, is to use CNNs to extract image features 
and then aggregate these features using modules such as average pool-
ing, maximum pooling, or element-wise sum, as illustrated in Fig. 2 
(Verma et al., 2020). For example, Liang et al. (2023) averaged the 
physical and perceptual features from the street-level images based on 
research units. However, these methods ignore the association between 
street-level images within the unit. Cao et al. (2018) extracted hidden 
features of street-level images with CNN. Subsequently, spatial inter-
polation was conducted within the unit for each hidden feature 
dimension, resulting in the utilization of a feature matrix to represent 
the unit’s characteristics. Although this approach considers spatial 
correlation, the fact that spatial interpolation cannot serve as a module 
in a neural network makes it impossible to perform end-to-end learning. 
Moreover, for some popular feature extractors of street-view images, the 
hidden feature dimension ranges from 512 to 4196, leading to an 
exceedingly large feature matrix for each unit, thereby affecting 
computational efficiency (He, Zhang, Ren, & Sun, 2016). 

While multi-view strategies in computer vision are valuebale for 
extracting features from multiple images, they are limited to a fixed 
number of images (Zhao, Xie, Xu, & Sun, 2017). In this study, the 
number of street-level images varies across spatial units ranging from 
several to hundreds due to the non-uniform distribution of sampling 
points. This variability in the number of images makes it challenging to 
transfer multi-view strategies to the fusion of varying numbers of street- 
level images. To address this issue, we propose the Vision-LSTM module, 
which draws on the experiences of applying natural language processing 
techniques to extract features from variable-length sequences. The 
Vision-LSTM module allows for the fusion of varying numbers of street- 
level images based on their semantic association, thus enabling the 
representation of regional features more accurately and effectively. 

2.3. Using multimodal data to recognize urban villages 

The growth of informal settlements (e.g., slums and shanty towns) is 
a global phenomenon accompanying increasingly urban sprawl. Ac-
cording to UN-Habitat (2013), an estimated 25% of the world’s urban 
population lives in informal settlements. In China, informal settlements 
are commonly known as “urban villages” (Li & Wu, 2013). Urban vil-
lages are residential areas characterized by small, overcrowded, and 
self-built houses that lack security of tenure, basic services, and facilities 
(Huang, Liu, & Zhang, 2015). They emerge from the fading boundaries 
between urban and suburban rural areas (Brindley, 2003; Chung, 2010). 
The low living standards in urban villages pose a significant challenge to 
urban management, as they are associated with issues such as black- 
odorous water, spread of infectious diseases, and social segregation. 
Thus, many countries, including China, have initiated programs to up-
grade or demolish urban villages in response to the UN-Habitat (2003) 
agenda for “cities without slums”. However, locating and mapping 
urban villages remain challenging in practice due to the complex and 
dynamic nature of land use distribution (Guan, Wei, Lu, Dai, & Su, 
2018). 

Conventional approaches for recognizing urban villages rely on field 
surveys, which can be challenging to scale up due to their time- 
consuming and labor-intensive nature. Studies have shown the 
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potential of satellite imagery for recognizing urban villages, as it can 
capture the physical environment from a nadir view (Hofmann & Bek-
karnayeva, 2017; Huang et al., 2015; Mast, Wei, & Wurm, 2020). 
However, urban villages cannot be effectively recognized solely based 
on satellite imagery (Guan et al., 2018). Such information is insufficient 
for tracking urban villages as it is visually similar to other land use types, 
such as suburban villages and dense residential zones. 

In recent years, multimodal learning has become an increasingly 
popular approach for urban function recognition, yielding more infor-
mative and precise results (Crooks et al., 2015; Feng et al., 2021; Gao, 
Janowicz, & Couclelis, 2017; Yao et al., 2022; Yuan et al., 2012). 
Compared with common urban functions, urban villages are are intri-
cately structured and encapsulate a richer semantic concept that is 
summarized by people’s daily life experiences, thus requiring more 
diverse data sources for their recognition (Chen, Feng, et al., 2022,Chen 
et al., 2022). Existing research has demonstrated that street-level im-
agery can provide a complementary view of urban space with a human- 
like perspective, as opposed to a nadir view. It captures specific visual 
characteristics of urban villages such as the multi-layered structure of 
building facades and the presence of compact and dirty streets (Chen, 
Feng, et al., 2022). Furthermore, human mobility data implicit in social 
sensing (Liu et al., 2015) complements visual insights for urban village 
recognition, as human travel behaviors differ across different land use 
types and urban villages (Pei et al., 2014). The complex residential 
structure of urban villages results in distinct travel patterns for their 
residents, providing a useful cue for recognition. 

Existing literature primarily relies on remote sensing techniques for 
recognizing and mapping urban villages (Mast et al., 2020; Shi et al., 
2020). Chen, Tu, et al. (2022) employed social sensing data, such as taxi 
trajectory data and POI data, along with remote sensing imagery, to 
achieve multimodal learning for urban village recognition. However, 
this approach neglects the substantial visual information provided by 
street-level imagery. In another study by Chen, Feng, et al. (2022), 
street-level imagery and remote sensing imagery were integrated to 
recognize urban villages. Nevertheless, this study falls short in 
adequately addressing the challenge of utilizing street-level imagery to 
accurately represent regional features. It randomly selects a single image 
from the area, which is arbitrary and fails to provide a comprehensive 
visual representation of the urban environment. This paper presents a 
multimodal model that integrates remote sensing imagery, street-level 
imagery, and taxi trajectory data to build a comprehensive under-
standing of recognizing urban villages. 

3. Framework 

3.1. Vision-LSTM 

The proposed Vision-LSTM module, as depicted in Fig. 3, comprises a 
Convolutional Neural Network (CNN) with shared weights and a 
Recurrent Neural Network (RNN). Varying numbers of street-level im-
ages in spatial units can be treated as image sets of different lengths. To 
this end, we utilize the zero-padding method, a technique commonly 
used in natural language processing, to process such variable-length 
street-level image sets, as shown in Fig. 4. Subsequently, each image 
from the image sets is fed individually to a CNN model with shared 
weights to extract the semantic features of individual images, and the 
input image sets are processed as sets of image features. Notably, any 
blank images added during zero padding are ignored, ensuring they do 
not affect the model parameters during training. 

The effectiveness of LSTM in processing variable-length time-series 
data has been well-established in previous studies (Wang, Du, & Wang, 
2020). To leverage its capability, the Vision-LSTM module employs 
LSTM to capture the associations between image features extracted from 
long and variable-length sets of street-level images. However, since 
LSTM does not consider the 2-dimensional spatial information, image 
features from the sets are fed to the LSTM in a random order as time steps 
during training. The resulting deep features reflect the physical envi-
ronment observed from the pedestrian’s perspective and are indicative 
of overall features of spatial units, based on the varying lengths of street- 
level image sets. 

3.2. Multimodal model 

A multimodal deep neural network is proposed in this study, which 
utilizes a combination of satellite imagery, street-level imagery, and taxi 
trajectory data as inputs. The architecture of the proposed model, as 
depicted in Fig. 5, comprises of three branches, with each extracting 
distinct features from its respective input modality. The ResNet18 
backbone model is employed to extract the features of the nadir view in 
the satellite imagery branch. Meanwhile, the proposed Vision-LSTM 
module is used to extract visual features from varying numbers of 
street-level images in the street-level imagery branch. The LSTM fully 
convolutional networks (LSTM-FCN) backbone model is employed in the 
taxi trajectory branch to learn mobility features from travel volume 
time-series data based on taxi trajectories. Finally, features from all 

Fig. 2. Average pooling, maximum pooling and element-wise sum for the fusion of street-level image features, in comparison of our proposed Vision-LSTM (Fig. 3).  
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branches are concatenated and passed through a softmax layer to 
distinguish between urban and non-urban villages. 

3.2.1. Satellite imagery branch 
The satellite imagery branch serves to sense the physical environ-

ment of urban villages from a nadir view. To mitigate overfitting issues 
arising from model complexity, ResNet18, a small and efficient CNN 
architecture, is adopted as a feature extractor for satellite imagery. 
ResNet, as proposed by He et al. (2016), is widely utilized to extract 
visual features from satellite images since it can learn rich feature rep-
resentations of various scenes. The ResNet18 model parameters are pre- 
trained on over one million images from the ImageNet database (Kriz-
hevsky, Sutskever, & Hinton, 2012) to classify images into 1000 object 
categories. However, since the texture of satellite imagery differs greatly 
from those in the ImageNet database, the model parameters are opti-
mized and not frozen during training. To boost the model’s general-
ization ability, the training set’s satellite images are rotated and flipped 

for data augmentation. 
Each satellite image is initially fed into a 7 × 7 convolutional layer 

and a 3 × 3 maximum pooling layer. Then, the resulting image feature 
tensors are passed through four residual blocks and consolidated into 
feature vectors by the average pooling layer. As a result, ResNet18 
processes and summarizes each patch of the satellite image into a 512- 
dimensional numerical vector that captures semantic and contextual 
information about the physical environment from a nadir view. 

3.2.2. Street-level imagery branch 
The street-level imagery branch is designed to capture the physical 

environment from the perspective of pedestrians. To this end, the pro-
posed Vision-LSTM module, discussed in Section 3.1, is utilized to 
extract the overall features of spatial units from varying numbers of 
street-level images. The image features are extracted by employing a 
ResNet18 model in the Vision-LSTM module, which is pre-trained on the 
Places 365 database (Zhou, Lapedriza, Khosla, Oliva, & Torralba, 2017), 

Fig. 3. Structure of the Vision-LSTM.  

Fig. 4. Zero padding for street-level image sets.  
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a 10-million-image database designed for scene recognition, and better 
suited for street-level image classification. Given the complexity of the 
overall model, all parameters of the ResNet18 model in the street-level 
imagery branch are frozen during model training to prevent overfitting. 

Once the ResNet18 model extracts the features of street-level images, 
each image is represented by a 512-dimensional feature. Next, these 
features are fused using LSTM to extract a overall 512-dimensional 
features of spatial units from varying numbers of street-level images. 
Similar to the satellite images, rotation and flip transformations are 
applied to street-level images to augment the training dataset. 

3.2.3. Taxi trajectory branch 
The aim of the taxi trajectory branch is to capture human mobility in 

spatial units using raw Global Positioning System (GPS) data from taxi 
trips. The GPS data is associated with unique car IDs and timestamps to 
recognize individual trips. The origin and destination (OD) of each trip 
are defined by the GPS coordinates of the point where the taxi status 
changes from vacant to occupied and vice versa. The time series of OD 
frequencies reflect taxi travel activity in spatial units, which is crucial for 
studying urban mobility patterns and functions (Mou, Cai, Zhang, Chen, 
& Zhu, 2019). The OD points are counted by spatial units and hourly 
timestamps to generate separate two time series for O and D, which are 
concatenated into a single long sequence. The sequence is then 
normalized to construct human mobility features based on the frequency 
of taxi trajectories. 

This branch employs the LSTM-FCN model proposed by Karim, 
Majumdar, Darabi, and Chen (2018) to extract features from time-series 
travel volume data. The LSTM-FCN is well-suited for capturing temporal 
patterns of human activities and has been previously used for feature 
extraction of socioeconomic attributes (Yao et al., 2022). The LSTM-FCN 
model consists of two modules: the FCN module and LSTM module, 
which process the time-series data from two different perspectives. In 
the FCN module, the time-series data are treated as univariate time se-
ries with multiple time steps, and processed by three temporal convo-
lution blocks for feature extraction. The feature vectors are then 
obtained by a global average pooling layer. The features extracted from 
the LSTM and FCN modules are concatenated and summarized to a 512- 
dimensional feature vector. 

4. Experiments 

4.1. Study area and data 

Shenzhen, our study area, is located in the south of Guangdong 
Province, China, along the east coast of the Pearl River Delta (bounded 
by coordinates 113

◦

46′ − 114
◦

37′E,22
◦

27′ − 22
◦

52′N). As of the end of 
2020, Shenzhen encompasses a total area of 1997.47 km2 and consists of 
ten districts. With a permanent population of 17.63 million, it is the 
fourth most populous city in China. In the face of rapid urbanization, 
urban villages are increasingly prevalent in Shenzhen (Chen, Feng, et al., 
2022; Lai, Jiang, & Xu, 2021; Wang, Wang, & Wu, 2009), as depicted in 
Fig. 6. 

The multimodal data consist of high-resolution satellite imagery, 
street-level imagery, and taxi trajectory data.  

• High-resolution satellite imagery for the year 2016 was collected 
from Google Earth, covering the entire Shenzhen city with a spatial 
resolution of 0.6 m per pixel and featuring three bands: red, green, 
and blue. To prepare the imagery for subsequent model input, it was 
uniformly segmented into subsets of 500 × 500 m.  

• Street-level imagery was collected along the road network of 
Shenzhen in 2016 at intervals of 50 m using the Tencent street view 
application programming interface (API) (https://lbs.qq.com). A 
total of 292,037 sampling points were acquired, each containing a 
point ID, coordinates, and four street-level images captured from 
different angles, namely front, back, left, and right.  

• Taxi trajectory data were collected from the smart GPS receiver 
installed inside taxis, which provide valuable insights into the 
mobility patterns of citizens (Wu et al., 2017). The data records in-
formation such as license plates, time, GPS coordinates, speed, and 
working status (occupied or vacant). Specifically, we collected a total 
of 860,436,489 records of taxi trajectories covering a 7-day period 
from October 23, 2017, to October 29, 2017, for our analysis. 

We obtained the ground-truth data of urban villages from Chen, Tu, 
et al. (2022), which were generated through manual labeling based on 
satellite and street-level imagery, complemented by official urban 
planning documents. The dataset provides the vector boundaries of each 
urban village within the city’s expanse, and the spatial distribution of 

Fig. 5. Structure of multimodal model.  
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urban villages can be seen in Fig. 5. Given the stability of the built-up 
areas and planned demolitions of Shenzhen between 2016 and 2017, 
the temporal consistency of the multimodal data is not expected to 
significantly affect the recognition experiments. Nevertheless, it is worth 
noting that consistency over time would undoubtedly enhance the 
modeling and data analysis. 

4.2. Experiment setup 

This study adopts a grid-based approach with a spatial resolution of 
500 m to construct the models. This selection ensures that each grid can 
be adequately represented with sufficient data. After filtering out grids 
with missing data, the study obtained 4952 valid grids. Given that the 
excluded grids primarily include forest, lake, and parks, their exclusion 
does not significantly impact the recognition results. Each valid grid is 
characterized by three modalities, namely a satellite image, a varying 
number of street-level images, and taxi origin-destination (OD) travel 
volume time series (see Fig. 7). Refer to Table 1 for more details. 

For this study, grids intersecting with urban villages are denoted as 
positive samples, whereas those without any urban village areas are 
negative samples. It is important to retain grids with a small proportion 

of urban village areas as positive samples. Their spatial proximity to 
urban villages makes them potential sources of meaningful insights 
regarding urban villages, aligning with the first law of geography 
(Tobler, 1970). Determining the occupancy threshold for urban villages 
requires expert knowledge and experience, and is not transferable to 
other cities or spatial units of different resolutions. To ensure the 
model’s validity and reliability, 20% of the samples were randomly 
selected as a validation dataset, while the remaining 80% of the samples 
were utilized for model training. The configuration details can be found 
in Table 2, and the spatial distribution of the samples is illustrated in 
Fig. 8. 

Given the frozen parameters of the image feature extractor in the 
street-level imagery branch and the high memory demand of street-level 
images, the feature extraction process was conducted prior to model 
training. To optimize the model’s performance, the stochastic gradient 
descent (SGD) optimizer with a momentum of 0.9 was used, and the 
warm-up strategy (He et al., 2016) was adopted. Specifically, the 
learning rate was initially set to 0.0035 for first 10 epochs to warm up 
the training, after which it was reset to the initial value of 0.1 for the 
remainder of the training. The Cosine learning rate decay (Loshchilov & 
Hutter, 2017) was then used to determine the learning rate for each 

Fig. 6. Research area: Shenzhen, China. (a) Spatial distribution of urban villages and street-level images of (b) formal settlements and (c) urban villages are shown.  
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epoch, and the training process was continued for a total of 100 epochs 
with a batch size of 128. An early-stop method was employed to address 
the overfitting issue, whereby the training process would terminate if 
the validation loss failed to decrease after 10 epochs. 

In view of the fact that the widely used cross-entropy loss may not be 
effective for unbalanced datasets, this study utilized the weighted cross- 
entropy (WCE) loss. The WCE loss can be calculated as: 

WCEloss = −
∑n

i=1
wipilog(qi) (1)  

where wi represents the weight, and it is generally set to be inversely 
proportional to their frequency in the training dataset. pi and qi represent 

the true label and the predicted label, respectively. 
To evaluate the model performance, the confusion matrix, overall 

accuracy (OA), Kappa index, and F1 score were adopted as evaluation 
metrics. All experiments were implemented on the PyTorch 1.10.0 
framework with Python 3.7, and executed on a NVIDIA GeForce RTX 
2080 Ti GPU with 11G memory and an Intel Xeon Gold 5118 @2.30GHz 
CPU. The operating system used was Ubuntu 18.04. 

5. Results 

5.1. Overall results 

The present study achieved an OA of 92.0% on the validation data-
set, accompanied by a Kappa index of 0.720 and an F1 score of 0.773. 
The distribution of correct confidence values for the samples, as illus-
trated in Fig. 9(a), indicates that approximately 20% of the samples 
exhibit a confidence level below 0.7. The median confidence level for all 
samples is found to be 0.897. The results suggest that the model per-
forms well, as a majority of the samples are recognized with high con-
fidence levels, which means that the features captured by the model 
make it easier to correctly identify most samples. 

Fig. 9(b) displays the correlation between gross domestic product 
(GDP) and the mean confidence of administrative districts. The GDP 
data was collected from the Shenzhen statistical yearbook of 2017 
(Bureau, 2017). The results indicate that highly developed or suburban 
districts tend to have higher confidence and are easier to recognize. For 
instance, Nanshan and Futian have high confidence (0.860 and 0.862, 
respectively) and high GDP values. In contrast, Dapeng and Guangming 
also exhibit high confidence (0.924 and 0.856, respectively), but their 
GDP values are low. Developing areas such as Luohu and Longhua have 
significantly lower confidence. Such areas, often characterized by a 
dense concentration of self-built village houses and factories, locate in 

Fig. 7. Example from the dataset. This figure comprises three subfigures representing different data modalities: (a) satellite imagery, (b) street-level imagery, and (c) 
taxi trajectories. Due to the large number of street-level images, subfigure (b) displays a random selection of 8 images. 

Table 1 
Statistics of valid grids.  

Statistical value Number of street-level images Travel volume 

Mean 282 3633 
Min 4 1 
25% 108 39 
Medium 232 232 
75% 396 1845 
Max 1692 160,803 
Sum 1,396,791 17,992,053  

Table 2 
Configuration of sample numbers.  

Dataset Number of positive sample Number of negative sample 

Training 3305 803 
Validation 657 187  
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the rural-urban transition zone and bear resemblances to urban villages. 
Hence, in these developing areas, the model may classify samples with 
low confidence that are easily confused with urban villages, which is 
reasonable. 

Fig. 9(c) supports the findings presented in the previous paragraph. It 
is generally believed that the downtown of Shenzhen is the Nanshan- 
Futian area, which exhibits superior classification performance. As ur-
banization progresses outward, the confidence levels of adjacent dis-
tricts begin to diminish. However, the more distant areas show a 
resurgence in relatively high confidence levels. 

Fig. 10 exhibits four different samples with varying confidence 
levels. Since the number of street-level images in these samples varies, 
the figure shows eight randomly chosen street-level images for each 
sample. The high-confidence urban village, as displayed in Fig. 10(a), is 
characterized by crowded streets with buildings situated in close prox-
imity to each other. The mobility pattern of residents is not evident. 
Conversely, Fig. 10(b) portrays a typical formal settlement with clean 
streets and abundant vegetation. The travel activities of residents exhibit 
a clear daily pattern. Despite the overall good performance of the 
multimodal model, there remain certain challenging samples, such as 
cases where there is marked social segregation within grids, where it 
may fail to identify urban villages. Fig. 10(c) demonstrates this scenario, 
where although a significant part of the area is occupied by urban vil-
lages, the presence of non-urban village characteristics such as wide 
roads in most street-level images can misguide the multimodal model. 
Similarly, formal villages with a dense distribution of self-built houses, 
as depicted in Fig. 10(d), may pose a difficulty in recognition. 

5.2. Effectiveness of street-level imagery integration into multimodal 
learning 

In order to assess the efficacy of integrating street-level imagery into 
multimodal learning, we trained both unimodal and bimodal models 
separately for comparison with the multimodal model in this study. To 
guarantee a fair comparison, the same training and validation datasets 
as well as model hyperparameters were utilized for all models. The re-
sults of this analysis are presented in Table 3. 

The results demonstrate that the model with Vision-LSTM fused with 
street-level images outperforms other unimodal models, achieving an 
OA of 82.8%, Kappa of 0.540, and F1 of 0.647. These findings suggest 

that street-level images provide crucial information for recognizing 
urban villages. The unimodal model based on remote sensing imagery 
also performs well, with an OA of 81.8%, Kappa of 0.541, and F1 of 
0.650. In contrast, the unimodal model based on taxi trajectories shows 
lower performance, with an OA of 71.9%. However, integrating taxi 
trajectory data with either satellite imagery or street-level imagery leads 
to significant improvement, with both models achieving an OA of 
approximately 87%. Notably, the bimodal model that combines satellite 
imagery and street-level imagery demonstrates the best performance, 
indicating that visual information plays a vital role in the recognition of 
urban villages, as these areas possess distinct visual and morphological 
characteristics. 

Moreover, the results highlight the importance of multimodal 
learning in recognizing urban villages. When all three modalities are 
fused, the OA of the multimodal model significantly improves to 91.6%, 
which is a substantial improvement over the unimodal models. Addi-
tionally, the Kappa and F1 scores see considerable enhancements, with 
respective increases of 0.180 and 0.126 when compared to the unimodal 
model of street-level imagery. These results emphasize the significance 
of incorporating street-level imagery into multimodal learning for urban 
village recognition. 

6. Discussion 

6.1. Fusing varying numbers of street-level images 

Table 4 presents the results of four statistical fusion methods and our 
proposed Vision-LSTM module in two different resolution units. The 
stability of model significantly fluctuates when we do not use multiple 
image fusion and randomly select a street-level image to represent the 
spatial unit. As Table 4 demonstrates, for the 500-m grids, there is no 
significant improvement observed in no fusion and average pooling 
methods compared to the bimodal model that integrates remote sensing 
imagery and taxi trajectory data. The average pooling method improves 
the overall accuracy (OA) by 1.9% and Kappa and F1 by 0.046 and 
0.040, respectively, compared to the bimodal model. However, the 
maximum pooling and element-wise sum methods perform worse than 
the bimodal model, possibly due to their inability to extract critical in-
formation, resulting in a reduction of differences between images. 
Notably, the proposed Vision-LSTM method shows a marked 

Fig. 8. Distribution of training and validation samples.  
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improvement with an OA and Kappa improved by 2.5% and 0.064, 
respectively, compared to the average pooling method. 

Similar patterns exist in the models trained on the 250-m grids, 
whereas all the models trained on 500-m grids exhibit significantly su-
perior performance compared to those trained on 250-m grids. This 
disparity may arise due to the limited ability of the model to capture 
only local features of urban villages when the grid size is small. 
Consequently, these local features can be easily confused with other 
types of urban functions. Conversely, employing a 500-m grid enables 
models to capture a more comprehensive view of urban villages since 
the size of a 500-m grid is almost the size of a small urban village. 

These findings suggest that LSTM can extract effective information 
from both image feature sets and long-time series. The feature spaces 
generated by statistical fusion methods are less efficient in distinguish-
ing between urban villages and non-urban villages, while the Vision- 
LSTM module utilizes a parameter learning approach to extract dense 
features containing essential information about urban villages. Addi-
tionally, the Vision-LSTM module requeires fewer parameters, a ma-
jority of which can be fine-tuned by other classical models. This 

approach minimizes computational resources and complexity of the 
multimodal model. 

It is important to acknowledge that while Vision-LSTM is imple-
mented within grid systems for the urban village case, its applicability 
extends beyond specific spatial units. Vision-LSTM offers a versatile 
approach for effectively fusing multiple street-level images. In various 
contexts, it can be appropriately adapted to accommodate diverse unit 
systems, such as street blocks or H3 hexagons. 

6.2. Using multimodal data to understand urban functions 

With the increasing availability of sensing technology, researchers 
now have a greater range of data options that can reveal hidden infor-
mation about cities. Different data modalities provide distinct perspec-
tives on urban features and functions, enriching the understanding of 
urban spaces for both humans and machines. For example, satellite 
imagery can provide information on surface entities and textures, while 
social sensing data like taxi trajectories can shed light on resident 
mobility patterns and social functions. Special urban functions, such as 

Fig. 9. Distribution of the confidence of correct label. (a) Cumulative distribution. (b) Scatter between gross domestic product (GDP) and mean confidence of each 
administrative district. (c) Spatial distribution. The GDP data was collected from Shenzhen statistical yearbook of 2017 (Bureau, 2017). 
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Fig. 10. Several samples in different confidence. (a) True positive urban village sample in high confidence. (b) True negative non-urban village sample in high 
confidence. (c) False negative urban village sample in low confidence. (d) False positive non-urban village sample in low confidence. 
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informal settlements and urban villages, are typically difficult to 
recognize using unimodal data, and may require expert knowledge to 
identify even through manual recognition (Mast et al., 2020). Conse-
quently, intelligent processing and fusion of multimodal data are 
essential for the accurate recognition of urban functions. Street-level 
imagery used to difficult to combine with other data for multimodal 
learning although it has proven to be a powerful tool to understand 
urban spaces. With Vision-LSTM, researchers can use street-level im-
agery to depict the urban environment at various spatial scales, which 
sheds light on future urban studies. 

Although the proposed multimodal model is used to recognize urban 
villages in this study, it can be applied to the recognition of other urban 
functions as well. The model focuses on sensing distinct information 
related to particular urban functions from multimodal data, rather than 
being restricted toone specific urban function. Using a wider range of 
data from different modalities can potentially improve the model’s 
performance. The data sources used in this study, such as satellite im-
agery and street-level imagery, are relatively easy to obtain, while data 
such as taxi trajectory data may be more challenging to acquire. Since 
taxi trajectory data serves as a proxy for human dynamics, other human 
activity data, such as check-in data (Liu, Sui, Kang, & Gao, 2014) and 
SafeGraph data (Chen, Bowers, Zhu, Gao, & Cheng, 2022), could serve 
as alternatives. 

7. Conclusion 

This study presents a novel deep learning module that integrates 
varying numbers of street-level images to represent the characteristics of 
an urban spatial unit. The proposed module is utilized in the context of 
recognizing urban villages in Shenzhen, and its integration into a 
multimodal model leads to a 91.6% accuracy. The results demonstrate 
that the module outperforms common statistical methods in capturing 
the complex connections between street-level images. By using this 
module, street-level imagery can be used more widely, such as urban 
studies at different spatial scales and multimodal learning by fusing 

other data. This approach has the potential to enhance the under-
standing of urban spaces, and can be applied to other urban contexts 
beyond the identification of urban villages. 
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